Isoform-specific regulation of HCN4 channels by a family of endoplasmic reticulum proteins.
Animals
CHO Cells
Cell Line
Cricetulus
Cyclic AMP
/ metabolism
Endoplasmic Reticulum
/ metabolism
Gene Expression Regulation
Humans
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels
/ chemistry
Male
Membrane Potentials
/ drug effects
Membrane Proteins
/ genetics
Mice
Models, Biological
Multigene Family
Myocytes, Cardiac
/ metabolism
Phosphoproteins
/ metabolism
Protein Binding
Protein Interaction Domains and Motifs
Protein Isoforms
Sinoatrial Node
/ physiology
HCN channel
IRAG
LRMP
ion channel
sinoatrial node
Journal
Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876
Informations de publication
Date de publication:
28 07 2020
28 07 2020
Historique:
pubmed:
11
7
2020
medline:
18
9
2020
entrez:
11
7
2020
Statut:
ppublish
Résumé
Ion channels in excitable cells function in macromolecular complexes in which auxiliary proteins modulate the biophysical properties of the pore-forming subunits. Hyperpolarization-activated, cyclic nucleotide-sensitive HCN4 channels are critical determinants of membrane excitability in cells throughout the body, including thalamocortical neurons and cardiac pacemaker cells. We previously showed that the properties of HCN4 channels differ dramatically in different cell types, possibly due to the endogenous expression of auxiliary proteins. Here, we report the discovery of a family of endoplasmic reticulum (ER) transmembrane proteins that associate with and modulate HCN4. Lymphoid-restricted membrane protein (LRMP, Jaw1) and inositol trisphosphate receptor-associated guanylate kinase substrate (IRAG, Mrvi1, and Jaw1L) are homologous proteins with small ER luminal domains and large cytoplasmic domains. Despite their homology, LRMP and IRAG have distinct effects on HCN4. LRMP is a loss-of-function modulator that inhibits the canonical depolarizing shift in the voltage dependence of HCN4 in response to the binding of cAMP. In contrast, IRAG causes a gain of HCN4 function by depolarizing the basal voltage dependence in the absence of cAMP. The mechanisms of action of LRMP and IRAG are independent of trafficking and cAMP binding, and they are specific to the HCN4 isoform. We also found that IRAG is highly expressed in the mouse sinoatrial node where computer modeling predicts that its presence increases HCN4 current. Our results suggest important roles for LRMP and IRAG in the regulation of cellular excitability, as tools for advancing mechanistic understanding of HCN4 channel function, and as possible scaffolds for coordination of signaling pathways.
Identifiants
pubmed: 32647060
pii: 2006238117
doi: 10.1073/pnas.2006238117
pmc: PMC7395510
doi:
Substances chimiques
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels
0
Membrane Proteins
0
Phosphoproteins
0
Protein Isoforms
0
Cyclic AMP
E0399OZS9N
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
18079-18090Subventions
Organisme : NIDDK NIH HHS
ID : P30 DK116073
Pays : United States
Organisme : NEI NIH HHS
ID : R00 EY024267
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL088427
Pays : United States
Déclaration de conflit d'intérêts
The authors declare no competing interest.
Références
Hum Mol Genet. 2010 Oct 1;19(19):3885-94
pubmed: 20639392
EMBO J. 2004 Oct 27;23(21):4222-31
pubmed: 15483626
J Gen Physiol. 2017 Feb;149(2):237-247
pubmed: 28057842
J Physiol. 2015 Jun 15;593(12):2649-63
pubmed: 25903031
Elife. 2018 Aug 06;7:
pubmed: 30080138
Brain Struct Funct. 2018 Apr;223(3):1537-1564
pubmed: 29168010
J Biol Chem. 2011 Apr 22;286(16):14209-14
pubmed: 21372143
Circ Res. 1997 Jul;81(1):60-8
pubmed: 9201028
Nature. 1989 Aug 31;340(6236):715-8
pubmed: 2475782
Biomed Res Int. 2013;2013:872454
pubmed: 23936852
Cereb Cortex. 2019 May 1;29(5):2291-2304
pubmed: 30877792
Biophys J. 1990 Jun;57(6):1117-23
pubmed: 2393700
Nature. 2001 Jun 14;411(6839):805-10
pubmed: 11459060
J Biol Chem. 2009 Jan 9;284(2):1242-51
pubmed: 19008220
Mol Cell. 2000 Jul;6(1):11-22
pubmed: 10949023
Genes Brain Behav. 2019 Feb;18(2):e12550
pubmed: 30585408
Science. 2015 Jan 23;347(6220):1260419
pubmed: 25613900
J Biol Chem. 2005 Oct 7;280(40):34224-32
pubmed: 16079136
J Immunol. 1994 Jul 15;153(2):682-90
pubmed: 8021504
Annu Rev Biochem. 2011;80:973-1000
pubmed: 21548779
Mol Syst Biol. 2011 Oct 11;7:539
pubmed: 21988835
Nature. 1998 Jun 11;393(6685):587-91
pubmed: 9634236
Annu Rev Physiol. 2020 Feb 10;82:21-43
pubmed: 31756134
Neuron. 2006 Dec 21;52(6):1027-36
pubmed: 17178405
Am J Physiol Cell Physiol. 2008 Jan;294(1):C355-62
pubmed: 17977941
Science. 1992 May 8;256(5058):839-42
pubmed: 1375395
Biochim Biophys Acta. 1996 May 6;1286(1):53-63
pubmed: 8634323
J Gen Physiol. 2006 Nov;128(5):593-604
pubmed: 17074978
Proc Natl Acad Sci U S A. 2017 Dec 26;114(52):13822-13827
pubmed: 29229815
Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):18011-6
pubmed: 24128759
J Appl Physiol (1985). 1999 Jul;87(1):97-103
pubmed: 10409562
Mol Pharmacol. 2006 Apr;69(4):1328-37
pubmed: 16387796
FEBS Lett. 2004 Sep 24;575(1-3):19-22
pubmed: 15388327
Annu Rev Physiol. 2001;63:815-46
pubmed: 11181977
J Biol Chem. 2012 Aug 3;287(32):26506-12
pubmed: 22715094
J Biol Chem. 2017 Oct 27;292(43):17794-17803
pubmed: 28864772
J Gen Physiol. 2012 Nov;140(5):557-66
pubmed: 23109717
Science. 1988 Nov 18;242(4881):1042-5
pubmed: 3194754
Nature. 1996 Nov 7;384(6604):80-3
pubmed: 8900283
Nature. 1991 May 9;351(6322):145-7
pubmed: 1709448
Cell. 2016 Apr 21;165(3):535-50
pubmed: 27104977
J Physiol. 2001 Nov 15;537(Pt 1):93-100
pubmed: 11711564
Circ Res. 2010 Mar 5;106(4):659-73
pubmed: 20203315
J Biol Chem. 2004 Oct 15;279(42):43847-53
pubmed: 15292205
J Neurosci. 2004 Nov 24;24(47):10750-62
pubmed: 15564593
Elife. 2019 Sep 09;8:
pubmed: 31496517
Proc Natl Acad Sci U S A. 2012 May 15;109(20):7899-904
pubmed: 22550182
Trends Neurosci. 2002 Dec;25(12):626-31
pubmed: 12446130
Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):19225-30
pubmed: 16357209
Epilepsia Open. 2017 Aug 05;2(3):334-342
pubmed: 29588962
Bioinformatics. 2009 May 1;25(9):1189-91
pubmed: 19151095
Neuron. 2009 Jun 25;62(6):814-25
pubmed: 19555650
Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):609-14
pubmed: 21187420
J Neurosci. 2011 Mar 16;31(11):4074-86
pubmed: 21411649
Chem Senses. 2010 Feb;35(2):171-7
pubmed: 20071408
Int J Mol Sci. 2015 Jan 29;16(2):3071-94
pubmed: 25642760
J Biol Chem. 1996 Sep 20;271(38):23528-34
pubmed: 8798562
J Gen Physiol. 2010 Sep;136(3):247-58
pubmed: 20713547
Neuron. 2009 Jun 25;62(6):802-13
pubmed: 19555649
Channels (Austin). 2010 May-Jun;4(3):215-31
pubmed: 20305382
J Biol Chem. 1996 Feb 2;271(5):2406-12
pubmed: 8576199
J Biol Chem. 2011 Dec 30;286(52):44811-20
pubmed: 22006928
J Mol Cell Cardiol. 2009 May;46(5):636-43
pubmed: 19336273
Nat Protoc. 2013 Nov;8(11):2281-2308
pubmed: 24157548
Physiol Rev. 2008 Jul;88(3):919-82
pubmed: 18626064
Front Physiol. 2012 Jul 02;3:240
pubmed: 22783204
Nature. 1979 Jul 19;280(5719):235-6
pubmed: 450140
Oncogene. 1999 Mar 25;18(12):2069-84
pubmed: 10321731
Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):15235-40
pubmed: 14657344
Circ Res. 2003 Sep 5;93(5):388-98
pubmed: 12958142
Cell. 2017 Jan 12;168(1-2):111-120.e11
pubmed: 28086084
Nature. 2000 Mar 9;404(6774):197-201
pubmed: 10724174