Echocardiographic two-dimensional speckle tracking identifies acute regional myocardial edema and sub-acute fibrosis in pediatric focal myocarditis with normal ejection fraction: comparison with cardiac magnetic resonance.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
09 07 2020
09 07 2020
Historique:
received:
11
12
2019
accepted:
05
06
2020
entrez:
11
7
2020
pubmed:
11
7
2020
medline:
1
1
2021
Statut:
epublish
Résumé
The aim here was to describe the role of speckle tracking echocardiography (STE), in identifying impairment in systolic function in children and adolescents with focal myocarditis and without reduction in ejection fraction. We describe data from 33 pediatric patients (age 4-17 years) admitted for focal myocarditis, confirmed by cardiac magnetic resonance (CMR), and without impaired ejection fraction and/or wall motion abnormalities. All children underwent Doppler echocardiography examination with analysis of global (G) and segmental longitudinal strain (LS) and CMR for the quantification of edema and myocardial fibrosis. Reduction in LS was defined according to age-specific partition values. At baseline, impaired GLS was present in 58% of patients (n = 19), albeit normal ejection fraction. LS was also regionally impaired, according to the area of higher edema at CMR (i.e. most impaired at the level of the infero-lateral segments as compared to other segments (p < 0.05). GLS impairment was also moderately correlated with the percentage edema at CMR (r = - 0.712; p = 0.01). At follow-up, GLS improved in all patients (p < 0.001), and normal values were found in 13/19 patients with baseline reduction. Accordingly persistent global and regional impairment was still observed in 6 patients. Patients with persistent LS reduction demonstrated residual focal cardiac fibrosis at follow-up CMR. Both global and regional LS is able to identify abnormalities in systolic longitudinal mechanics in children and adolescents with focal myocarditis and normal ejection fraction. The reduction in LS is consistent with edema amount and localization at CMR. Furthermore, LS identifies regional recovery or persistent cardiac function impairment, possibly related to residual focal fibrosis.
Identifiants
pubmed: 32647322
doi: 10.1038/s41598-020-68048-5
pii: 10.1038/s41598-020-68048-5
pmc: PMC7347592
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
11321Références
Dancea, A. B. Myocarditis in infants and children: a review for the paediatrician. Paediatr. Child. Health 6, 543–545 (2001).
doi: 10.1093/pch/6.8.543
Cooper, L. T. Jr., Keren, A., Sliwa, K., Matsumori, A. & Mensah, G. A. The global burden of myocarditis: part 1: a systematic literature review for the Global Burden of Diseases, Injuries, and Risk Factors 2010 study. Glob. Heart 9(1), 121–129 (2014).
doi: 10.1016/j.gheart.2014.01.007
May, L. J., Patton, D. J. & Fruitman, D. S. The evolving approach to paediatric myocarditis: a review of the current literature. Cardiol. Young 21(3), 241–251 (2011).
doi: 10.1017/S1047951110001964
Levi, D. & Alejos, J. Diagnosis and treatment of pediatric viral myocarditis. Curr. Opin. Cardiol. 16(2), 77–83 (2001).
doi: 10.1097/00001573-200103000-00001
Kühl, U. & Schultheiss, H. P. Myocarditis in children. Heart Fail. Clin. 6(4), 483–496 (2010).
doi: 10.1016/j.hfc.2010.05.009
Chow, L. H., Radio, S. J., Sears, T. D. & McManus, B. M. Insensitivity of right ventricular endomyocardial biopsy in the diagnosis of myocarditis. J. Am. Coll. Cardiol. 14, 915–920 (1989).
doi: 10.1016/0735-1097(89)90465-8
Cooper, L. T. et al. The role of endomyocardial biopsy in the management of cardiovascular disease. A scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. Endorsed by the Heart Failure Society of America and the Heart Failure Association of the European Society of Cardiology. J. Am. Coll. Cardiol. 50, 1914–1931 (2007).
doi: 10.1016/j.jacc.2007.09.008
Friedrich, M. G. et al. International consensus group on cardiovascular magnetic resonance in myocarditis. J. Am. Coll. Cardiol. 53(17), 1475–1487 (2009).
doi: 10.1016/j.jacc.2009.02.007
Lurz, P. et al. Diagnostic performance of CMR imaging compared with EMB in patients with suspected myocarditis. JACC Cardiovasc. Imaging 5, 513–524 (2012).
doi: 10.1016/j.jcmg.2011.11.022
Khoo, N. S. et al. Altered left ventricular tissue velocities, deformation and twist in children and young adults with acute myocarditis and normal ejection fraction. J. Am. Soc. Echocardiogr. 25, 294–303 (2012).
doi: 10.1016/j.echo.2011.10.010
Løgstrup, B. B., Nielsen, J. M., Kim, W. Y. & Poulsen, S. H. Myocardial oedema in acute myocarditis detected by echocardiographic 2D myocardial deformation analysis. Eur. Heart J. Cardiovasc. Imaging 17(9), 1018–1026 (2016).
doi: 10.1093/ehjci/jev302
Di Bella, G. et al. Myocardial deformation in acute myocarditis with normal left ventricular wall motion—Sa cardiac magnetic resonance and 2-dimensional strain echocardiographic study. Circ. J. 74(6), 1205–1213 (2010).
doi: 10.1253/circj.CJ-10-0017
Devereux, R. B. et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am. J. Cardiol. 57(6), 450–458 (1986).
doi: 10.1016/0002-9149(86)90771-X
Chinali, M. et al. Left ventricular mass indexing in infants, children, and adolescents: a simplified approach for the identification of left ventricular hypertrophy in clinical practice. J. Pediatr. 170, 193–198 (2016).
doi: 10.1016/j.jpeds.2015.10.085
de Simone, G. et al. Evaluation of concentric left ventricular geometry in humans: evidence for age-related systematic underestimation. Hypertension 45(1), 64–68 (2005).
doi: 10.1161/01.HYP.0000150108.37527.57
Lang, R. M. et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 16(3), 233–270 (2015).
doi: 10.1093/ehjci/jev014
Nagueh, S. F. et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 29(4), 277–314 (2016).
doi: 10.1016/j.echo.2016.01.011
Amundsen, B. H. et al. Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J. Am. Coll. Cardiol. 47(4), 789–793 (2006).
doi: 10.1016/j.jacc.2005.10.040
Levy, P. T. et al. Reference ranges of left ventricular strain measures by two-dimensional speckle-tracking echocardiography in children: a systematic review and meta-analysis. J. Am. Soc. Echocardiogr. 29(3), 209–225 (2016).
doi: 10.1016/j.echo.2015.11.016
Chang, H. et al. Alteration of IL-17 related protein expressions in experimental autoimmune myocarditis and inhibition of IL-17 by IL-10-Ig fusion gene transfer. Circ. J. 72, 813–819 (2008).
doi: 10.1253/circj.72.813
Smith, S. C., Ladenson, J. H., Mason, J. W. & Jaffe, A. S. Elevations of cardiac troponin I associated with myocarditis: experimental and clinical correlates. Circulation 95, 163–168 (2007).
doi: 10.1161/01.CIR.95.1.163
Aretz, H. T. et al. Myocarditis: a histopathologic definition and classification. Am. J. Cardiovasc. Pathol. 1, 3–14 (1997).