Potential contribution of the gut microbiota to hypoglycemia after gastric bypass surgery.


Journal

Chinese medical journal
ISSN: 2542-5641
Titre abrégé: Chin Med J (Engl)
Pays: China
ID NLM: 7513795

Informations de publication

Date de publication:
05 Aug 2020
Historique:
pubmed: 11 7 2020
medline: 15 5 2021
entrez: 11 7 2020
Statut: ppublish

Résumé

Obesity has become a global health problem. Lifestyle modification and medical treatment only appear to yield short-term weight loss. Roux-en-Y gastric bypass (RYGB) is the most popular bariatric procedure, and it sustains weight reduction and results in the remission of obesity-associated comorbidities for obese individuals. However, patients who undergo this surgery may develop hypoglycemia. To date, the diagnosis is challenging and the prevalence of post-RYGB hypoglycemia (PRH) is unclear. RYGB alters the anatomy of the upper gastrointestinal tract and has a combined effect of caloric intake restriction and nutrient malabsorption. Nevertheless, the physiologic changes after RYGB are complex. Although hyperinsulinemia, incretin effects, dysfunction of β-cells and α-cells, and some other factors have been widely investigated and are reported to be possible mediators of PRH, the pathogenesis is still not completely understood. In light of the important role of the gut microbiome in metabolism, we hypothesized that the gut microbiome might also be a critical link between RYGB and hypoglycemia. In this review, we mainly highlight the current possible factors predisposing individuals to PRH, particularly related to the gut microbiota, which may yield significant insights into the intestinal regulation of glucose metabolic homeostasis and provide novel clues to improve the treatment of type 2 diabetes mellitus.

Identifiants

pubmed: 32649508
doi: 10.1097/CM9.0000000000000932
pmc: PMC7470015
pii: 00029330-202008050-00009
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

1834-1843

Références

World Health Organization. Obesity and overweight. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. [Accessed April 01, 2020]
Malone JI, Hansen BC. Does obesity cause type 2 diabetes mellitus (T2DM)? Or is it the opposite? Pediatr Diabetes 2019; 20:5–9. doi: 10.1111/pedi.12787.
doi: 10.1111/pedi.12787
Kachur S, Lavie CJ, de Schutter A, Milani RV, Ventura HO. Obesity and cardiovascular diseases. Minerva Medica 2017; 108:212–228. doi: 10.23736/s0026-4806.17.05022-4.
doi: 10.23736/s0026-4806.17.05022-4
Schwenger KJP, Bolzon CM, Li C, Allard JP. Non-alcoholic fatty liver disease and obesity: the role of the gut bacteria. Eur J Nutr 2019; 58:1771–1784. doi: 10.1007/s00394-018-1844-5.
doi: 10.1007/s00394-018-1844-5
Shultz SP, Ambrose KR. “Where does it hurt?” Implications of obesity on musculoskeletal health. N C Med J 2017; 78:326–331. doi: 10.18043/ncm.78.5.326.
doi: 10.18043/ncm.78.5.326
Zheng J, Zhao M, Li J, Lou G, Yuan Y, Bu S, et al. Obesity-associated digestive cancers: a review of mechanisms and interventions. Tumour Biol 2017; 39:1010428317695020doi: 10.1177/1010428317695020.
doi: 10.1177/1010428317695020
Ko SH, Han KD, Yun JS, Chung S, Koh ES. Impact of obesity and diabetes on the incidence of kidney and bladder cancers: a nationwide cohort study. Eur J Endocrinol 2019; 181:489–498. doi: 10.1530/eje-19-0500.
doi: 10.1530/eje-19-0500
Derosa G, Maffioli P. Anti-obesity drugs: a review about their effects and their safety. Expert Opin Drug Saf 2012; 11:459–471. doi: 10.1517/14740338.2012.675326.
doi: 10.1517/14740338.2012.675326
Madsbad S, Dirksen C, Holst JJ. Mechanisms of changes in glucose metabolism and bodyweight after bariatric surgery. Lancet Diabetes Endocrinol 2014; 2:152–164. doi: 10.1016/s2213-8587(13)70218-3.
doi: 10.1016/s2213-8587(13)70218-3
van Dijk SJ, Molloy PL, Varinli H, Morrison JL, Muhlhausler BS. Epigenetics and human obesity. Int J Obes (Lond) 2015; 39:85–97. doi: 10.1038/ijo.2014.34.
doi: 10.1038/ijo.2014.34
Rosen ED, Kaestner KH, Natarajan R, Patti ME, Sallari R, Sander M, et al. Epigenetics and epigenomics: implications for diabetes and obesity. Diabetes 2018; 67:1923–1931. doi: 10.2337/db18-0537.
doi: 10.2337/db18-0537
Alsumali A, Eguale T, Bairdain S, Samnaliev M. Cost-effectiveness analysis of bariatric surgery for morbid obesity. Obes Surg 2018; 28:2203–2214. doi: 10.1007/s11695-017-3100-0.
doi: 10.1007/s11695-017-3100-0
Ruiz-Cota P, Bacardi-Gascon M, Jimenez-Cruz A. Long-term outcomes of metabolic and bariatric surgery in adolescents with severe obesity with a follow-up of at least 5 years: A systematic review. Surgery for obesity and related Dis 2019; 15:133–144. doi: 10.1016/j.soard.2018.10.016.
doi: 10.1016/j.soard.2018.10.016
Dirksen C, Jorgensen NB, Bojsen-Moller KN, Jacobsen SH, Hansen DL, Worm D, et al. Mechanisms of improved glycaemic control after Roux-en-Y gastric bypass. Diabetologia 2012; 55:1890–1901. doi: 10.1007/s00125-012-2556-7.
doi: 10.1007/s00125-012-2556-7
Mechanick JI, Youdim A, Jones DB, Garvey WT, Hurley DL, McMahon MM, et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient--2013 update: cosponsored by American Association of Clinical Endocrinologists, the Obesity Society, and American Society for Metabolic & Bariatric Surgery. Endocr Pract 2013; 19:337–372. doi: 10.4158/ep12437.Gl.
doi: 10.4158/ep12437.gl
Shantavasinkul PC, Torquati A, Corsino L. Post-gastric bypass hypoglycaemia: a review. Clin Endocrinol 2016; 85:3–9. doi: 10.1111/cen.13033.
doi: 10.1111/cen.13033
Pucci A, Batterham RL. Mechanisms underlying the weight loss effects of RYGB and SG: similar, yet different. J Endocrinol Invest 2019; 42:117–128. doi: 10.1007/s40618-018-0892-2.
doi: 10.1007/s40618-018-0892-2
Ruiz-Tovar J, Carbajo MA, Jimenez JM, Castro MJ, Gonzalez G, Ortiz-de-Solorzano J, et al. Long-term follow-up after sleeve gastrectomy versus Roux-en-Y gastric bypass versus one-anastomosis gastric bypass: a prospective randomized comparative study of weight loss and remission of comorbidities. Surg Endosc 2019; 33:401–410. doi: 10.1007/s00464-018-6307-9.
doi: 10.1007/s00464-018-6307-9
Yaqub A, Smith EP, Salehi M. Hyperinsulinemic hypoglycemia after gastric bypass surgery: what's up and what's down? Int J Obes (Lond) 2018; 42:286–294. doi: 10.1038/ijo.2017.257.
doi: 10.1038/ijo.2017.257
Miele L, Giorgio V, Alberelli MA, De Candia E, Gasbarrini A, Grieco A. Impact of gut microbiota on obesity, diabetes, and cardiovascular disease risk. Curr Cardiol Rep 2015; 17:120doi: 10.1007/s11886-015-0671-z.
doi: 10.1007/s11886-015-0671-z
Baothman OA, Zamzami MA, Taher I, Abubaker J, Abu-Farha M. The role of Gut Microbiota in the development of obesity and Diabetes. Lipids Health Dis 2016; 15:108doi: 10.1186/s12944-016-0278-4.
doi: 10.1186/s12944-016-0278-4
Liu H, Hu C, Zhang X, Jia W. Role of gut microbiota, bile acids and their cross-talk in the effects of bariatric surgery on obesity and type 2 diabetes. J Diabetes Invest 2018; 9:13–20. doi: 10.1111/jdi.12687.
doi: 10.1111/jdi.12687
Whipple AO, Frantz VK. Adenoma of islet cells with hyperinsulinism: a review. Ann Surg 1935; 101:1299–1335. doi: 10.1097/00000658-193506000-00001.
doi: 10.1097/00000658-193506000-00001
Towler DA, Havlin CE, Craft S, Cryer P. Mechanism of awareness of hypoglycemia. Perception of neurogenic (predominantly cholinergic) rather than neuroglycopenic symptoms. Diabetes 1993; 42:1791–1798. doi: 10.2337/diab.42.12.1791.
doi: 10.2337/diab.42.12.1791
Ritz P, Vaurs C, Barigou M, Hanaire H. Hypoglycaemia after gastric bypass: mechanisms and treatment. Diabetes Obes Metab 2016; 18:217–223. doi: 10.1111/dom.12592.
doi: 10.1111/dom.12592
Salehi M, Vella A, McLaughlin T, Patti ME. Hypoglycemia after gastric bypass surgery: current concepts and controversies. J Clin Endocrinol Metab 2018; 103:2815–2826. doi: 10.1210/jc.2018-00528.
doi: 10.1210/jc.2018-00528
Marsk R, Jonas E, Rasmussen F, Naslund E. Nationwide cohort study of post-gastric bypass hypoglycaemia including 5,040 patients undergoing surgery for obesity in 1986-2006 in Sweden. Diabetologia 2010; 53:2307–2311. doi: 10.1007/s00125-010-1798-5.
doi: 10.1007/s00125-010-1798-5
Sarwar H, Chapman WH 3rd, Pender JR, Ivanescu A, Drake AJ 3rd, Pories WJ, et al. Hypoglycemia after Roux-en-Y gastric bypass: the BOLD experience. Obes Surg 2014; 24:1120–1124. doi: 10.1007/s11695-014-1260-8.
doi: 10.1007/s11695-014-1260-8
Lee CJ, Clark JM, Schweitzer M, Magnuson T, Steele K, Koerner O, et al. Prevalence of and risk factors for hypoglycemic symptoms after gastric bypass and sleeve gastrectomy. Obesity (Silver Spring) 2015; 23:1079–1084. doi: 10.1002/oby.21042.
doi: 10.1002/oby.21042
Pigeyre M, Vaurs C, Raverdy V, Hanaire H, Ritz P, Pattou F. Increased risk of OGTT-induced hypoglycemia after gastric bypass in severely obese patients with normal glucose tolerance. Surg Obes Related Dis 2015; 11:573–577. doi: 10.1016/j.soard.2014.12.004.
doi: 10.1016/j.soard.2014.12.004
Brix JM, Kopp HP, Hollerl F, Schernthaner GH, Ludvik B, Schernthaner G. Frequency of hypoglycaemia after different bariatric surgical procedures. Obes Facts 2019; 12:397–406. doi: 10.1159/000493735.
doi: 10.1159/000493735
Raverdy V, Baud G, Pigeyre M, Verkindt H, Torres F, Preda C, et al. Incidence and Predictive factors of postprandial hyperinsulinemic hypoglycemia after Roux-en-Y gastric bypass: a five year longitudinal study. Ann Surg 2016; 264:878–885. doi: 10.1097/sla.0000000000001915.
doi: 10.1097/sla.0000000000001915
Lee CJ, Wood GC, Lazo M, Brown TT, Clark JM, Still C, et al. Risk of post-gastric bypass surgery hypoglycemia in nondiabetic individuals: a single center experience. Obesity (Silver Spring) 2016; 24:1342–1348. doi: 10.1002/oby.21479.
doi: 10.1002/oby.21479
Kefurt R, Langer FB, Schindler K, Shakeri-Leidenmuhler S, Ludvik B, Prager G. Hypoglycemia after Roux-En-Y gastric bypass: detection rates of continuous glucose monitoring (CGM) versus mixed meal test. Surg Obes Related Dis 2015; 11:564–569. doi: 10.1016/j.soard.2014.11.003.
doi: 10.1016/j.soard.2014.11.003
Salehi M, Gastaldelli A, D’Alessio DA. Altered islet function and insulin clearance cause hyperinsulinemia in gastric bypass patients with symptoms of postprandial hypoglycemia. J Clin Endocrinol Metab 2014; 99:2008–2017. doi: 10.1210/jc.2013-2686.
doi: 10.1210/jc.2013-2686
Salehi M, Gastaldelli A, D’Alessio DA. Blockade of glucagon-like peptide 1 receptor corrects postprandial hypoglycemia after gastric bypass. Gastroenterology 2014; 146:669–680.e2. doi: 10.1053/j.gastro.2013.11.044.
doi: 10.1053/j.gastro.2013.11.044
Salehi M, D’Alessio DA. Effects of glucagon like peptide-1 to mediate glycemic effects of weight loss surgery. Rev Endocr Metab Disord 2014; 15:171–179. doi: 10.1007/s11154-014-9291-y.
doi: 10.1007/s11154-014-9291-y
Shah M, Laurenti MC, Dalla Man C, Ma J, Cobelli C, Rizza RA, et al. Contribution of endogenous glucagon-like peptide-1 to changes in glucose metabolism and islet function in people with type 2 diabetes four weeks after Roux-en-Y gastric bypass (RYGB). Metabolism 2019; 93:10–17. doi: 10.1016/j.metabol.2018.12.005.
doi: 10.1016/j.metabol.2018.12.005
Shah M, Law JH, Micheletto F, Sathananthan M, Dalla Man C, Cobelli C, et al. Contribution of endogenous glucagon-like peptide 1 to glucose metabolism after Roux-en-Y gastric bypass. Diabetes 2014; 63:483–493. doi: 10.2337/db13-0954.
doi: 10.2337/db13-0954
Goldfine AB, Mun EC, Devine E, Bernier R, Baz-Hecht M, Jones DB, et al. Patients with neuroglycopenia after gastric bypass surgery have exaggerated incretin and insulin secretory responses to a mixed meal. J Clin Endocr Metab 2007; 92:4678–4685. doi: 10.1210/jc.2007-0918.
doi: 10.1210/jc.2007-0918
Craig CM, Liu LF, Deacon CF, Holst JJ, McLaughlin TL. Critical role for GLP-1 in symptomatic post-bariatric hypoglycaemia. Diabetologia 2017; 60:531–540. doi: 10.1007/s00125-016-4179-x.
doi: 10.1007/s00125-016-4179-x
Salehi M, Woods SC, D’Alessio DA. Gastric bypass alters both glucose-dependent and glucose-independent regulation of islet hormone secretion. Obesity (Silver Spring) 2015; 23:2046–2052. doi: 10.1002/oby.21186.
doi: 10.1002/oby.21186
Abrahamsson N, Borjesson JL, Sundbom M, Wiklund U, Karlsson FA, Eriksson JW. Gastric bypass reduces symptoms and hormonal responses in hypoglycemia. Diabetes 2016; 65:2667–2675. doi: 10.2337/db16-0341.
doi: 10.2337/db16-0341
Hepprich M, Wiedemann SJ, Schelker BL, Trinh B, Stärkle A, Geigges M, et al. Postprandial hypoglycemia in patients after gastric bypass surgery is mediated by glucose-induced IL-1β. Cell Metab 2020; 31:699–709.e5. doi: 10.1016/j.cmet.2020.02.013.
doi: 10.1016/j.cmet.2020.02.013
Service GJ, Thompson GB, Service FJ, Andrews JC, Collazo-Clavell ML, Lloyd RV. Hyperinsulinemic hypoglycemia with nesidioblastosis after gastric-bypass surgery. N Engl J Med 2005; 353:249–254. doi: 10.1056/NEJMoa043690.
doi: 10.1056/nejmoa043690
Vanderveen KA, Grant CS, Thompson GB, Farley DR, Richards ML, Vella A, et al. Outcomes and quality of life after partial pancreatectomy for noninsulinoma pancreatogenous hypoglycemia from diffuse islet cell disease. Surgery 2010; 148:1237–1245. doi: 10.1016/j.surg.2010.09.027.
doi: 10.1016/j.surg.2010.09.027
Salehi M, Prigeon RL, D’Alessio DA. Gastric bypass surgery enhances glucagon-like peptide 1-stimulated postprandial insulin secretion in humans. Diabetes 2011; 60:2308–2314. doi: 10.2337/db11-0203.
doi: 10.2337/db11-0203
Davis DB, Khoraki J, Ziemelis M, Sirinvaravong S, Han JY, Campos GM. Roux en Y gastric bypass hypoglycemia resolves with gastric feeding or reversal: Confirming a non-pancreatic etiology. Mol Metab 2018; 9:15–27. doi: 10.1016/j.molmet.2017.12.011.
doi: 10.1016/j.molmet.2017.12.011
Patti ME, Li P, Goldfine AB. Insulin response to oral stimuli and glucose effectiveness increased in neuroglycopenia following gastric bypass. Obesity (Silver Spring) 2015; 23:798–807. doi: 10.1002/oby.21043.
doi: 10.1002/oby.21043
Trakhtenbroit MA, Leichman JG, Algahim MF, Miller CC 3rd, Moody FG, Lux TR, et al. Body weight, insulin resistance, and serum adipokine levels 2 years after 2 types of bariatric surgery. Am J Med 2009; 122:435–442. doi: 10.1016/j.amjmed.2008.10.035.
doi: 10.1016/j.amjmed.2008.10.035
Ben-Zvi D, Meoli L, Abidi WM, Nestoridi E, Panciotti C, Castillo E, et al. Time-dependent molecular responses differ between gastric bypass and dieting but are conserved across species. Cell Metab 2018; 28:310–323.e6. doi: 10.1016/j.cmet.2018.06.004.
doi: 10.1016/j.cmet.2018.06.004
Sharma M, Li Y, Stoll ML, Tollefsbol TO. The epigenetic connection between the gut microbiome in obesity and diabetes. Front Genet 2019; 10:1329doi: 10.3389/fgene.2019.01329.
doi: 10.3389/fgene.2019.01329
Zhou L, Xiao X. The role of gut microbiota in the effects of maternal obesity during pregnancy on offspring metabolism. Biosci Rep 2018; 38:BSR20171234doi: 10.1042/BSR20171234.
doi: 10.1042/bsr20171234
Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A 2009; 106:2365–2370. doi: 10.1073/pnas.0812600106.
doi: 10.1073/pnas.0812600106
Tremaroli V, Karlsson F, Werling M, Stahlman M, Kovatcheva-Datchary P, Olbers T, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab 2015; 22:228–238. doi: 10.1016/j.cmet.2015.07.009.
doi: 10.1016/j.cmet.2015.07.009
Li JV, Ashrafian H, Bueter M, Kinross J, Sands C, le Roux CW, et al. Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk. Gut 2011; 60:1214–1223. doi: 10.1136/gut.2010.234708.
doi: 10.1136/gut.2010.234708
Liou AP, Paziuk M, Luevano JM Jr, Machineni S, Turnbaugh PJ, Kaplan LM. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med 2013; 5:178ra141doi: 10.1126/scitranslmed.3005687.
doi: 10.1126/scitranslmed.3005687
Al Assal K. Gut microbiota profile of obese diabetic women submitted to Roux-en-Y gastric bypass and its association with food intake and postoperative diabetes remission. Nutrients 2020; 12:E278doi: 10.3390/nu12020278.
doi: 10.3390/nu12020278
Palleja A, Kashani A, Allin KH, Nielsen T, Zhang C, Li Y, et al. Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Med 2016; 8:67doi: 10.1186/s13073-016-0312-1.
doi: 10.1186/s13073-016-0312-1
Graessler J, Qin Y, Zhong H, Zhang J, Licinio J, Wong ML, et al. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. Pharmacogenomics J 2013; 13:514–522. doi: 10.1038/tpj.2012.43.
doi: 10.1038/tpj.2012.43
Murphy R, Tsai P, Jullig M, Liu A, Plank L, Booth M. Differential changes in gut microbiota after gastric bypass and sleeve gastrectomy bariatric surgery vary according to diabetes remission. Obes Surg 2017; 27:917–925. doi: 10.1007/s11695-016-2399-2.
doi: 10.1007/s11695-016-2399-2
Medina DA, Pedreros JP, Turiel D, Quezada N, Pimentel F, Escalona A, et al. Distinct patterns in the gut microbiota after surgical or medical therapy in obese patients. PeerJ 2017; 5:e3443doi: 10.7717/peerj.3443.
doi: 10.7717/peerj.3443
Furet JP, Kong LC, Tap J, Poitou C, Basdevant A, Bouillot JL, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 2010; 59:3049–3057. doi: 10.2337/db10-0253.
doi: 10.2337/db10-0253
Haange SB, Jehmlich N, Krugel U, Hintschich C, Wehrmann D, Hankir M, et al. Gastric bypass surgery in a rat model alters the community structure and functional composition of the intestinal microbiota independently of weight loss. Microbiome 2020; 8:13doi: 10.1186/s40168-020-0788-1.
doi: 10.1186/s40168-020-0788-1
Arora T, Seyfried F, Docherty NG, Tremaroli V, le Roux CW, Perkins R, et al. Diabetes-associated microbiota in fa/fa rats is modified by Roux-en-Y gastric bypass. ISME J 2017; 11:2035–2046. doi: 10.1038/ismej.2017.70.
doi: 10.1038/ismej.2017.70
Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgun A, et al. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 2020; 51:102590doi: 10.1016/j.ebiom.2019.11.051.
doi: 10.1016/j.ebiom.2019.11.051
Aw W, Fukuda S. Understanding the role of the gut ecosystem in diabetes mellitus. J Diabetes Investig 2018; 9:5–12. doi: 10.1111/jdi.12673.
doi: 10.1111/jdi.12673
Wang PX, Deng XR, Zhang CH, Yuan HJ. Gut microbiota and metabolic syndrome. Chin Med J 2020; 133:808–816. doi: 10.1097/cm9.0000000000000696.
doi: 10.1097/cm9.0000000000000696
Adeshirlarijaney A, Gewirtz AT. Considering gut microbiota in treatment of type 2 diabetes mellitus. Gut Microbes 2020; [Epub ahead of print]. doi: 10.1080/19490976.2020.1717719.
doi: 10.1080/19490976.2020.1717719
Ding L, Xiao XH. Gut microbiota: closely tied to the regulation of circadian clock in the development of type 2 diabetes mellitus. Chin Med J 2020; 133:817–825. doi: 10.1097/cm9.0000000000000702.
doi: 10.1097/cm9.0000000000000702
Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56:1761–1772. doi: 10.2337/db06-1491.
doi: 10.2337/db06-1491
Makki K, Deehan EC, Walter J, Backhed F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 2018; 23:705–715. doi: 10.1016/j.chom.2018.05.012.
doi: 10.1016/j.chom.2018.05.012
Sun LJ, Li JN, Nie YZ. Gut hormones in microbiota-gut-brain cross-talk. Chin Med J 2020; 133:826–833. doi: 10.1097/cm9.0000000000000706.
doi: 10.1097/cm9.0000000000000706
Gonzalez-Regueiro JA, Moreno-Castaneda L, Uribe M, Chavez-Tapia NC. The role of bile acids in glucose metabolism and their relation with diabetes. Ann Hepatol 2017; 16: (Suppl 1): S15–S20. doi: 10.5604/01.3001.0010.5494.
doi: 10.5604/01.3001.0010.5494
Ryan KK, Tremaroli V, Clemmensen C, Kovatcheva-Datchary P, Myronovych A, Karns R, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature 2014; 509:183–188. doi: 10.1038/nature13135.
doi: 10.1038/nature13135
Scholtz S, Miras AD, Chhina N, Prechtl CG, Sleeth ML, Daud NM, et al. Obese patients after gastric bypass surgery have lower brain-hedonic responses to food than after gastric banding. Gut 2014; 63:891–902. doi: 10.1136/gutjnl-2013-305008.
doi: 10.1136/gutjnl-2013-305008
De Giorgi S, Campos V, Egli L, Toepel U, Carrel G, Cariou B, et al. Long-term effects of Roux-en-Y gastric bypass on postprandial plasma lipid and bile acids kinetics in female non diabetic subjects: a cross-sectional pilot study. Clin Nutr 2015; 34:911–917. doi: 10.1016/j.clnu.2014.09.018.
doi: 10.1016/j.clnu.2014.09.018
Gerhard GS, Styer AM, Wood GC, Roesch SL, Petrick AT, Gabrielsen J, et al. A role for fibroblast growth factor 19 and bile acids in diabetes remission after Roux-en-Y gastric bypass. Diabetes Care 2013; 36:1859–1864. doi: 10.2337/dc12-2255.
doi: 10.2337/dc12-2255
Nemati R, Lu J, Dokpuang D, Booth M, Plank LD, Murphy R. Increased bile acids and FGF19 after sleeve gastrectomy and Roux-en-Y gastric bypass correlate with improvement in type 2 diabetes in a randomized trial. Obes Surg 2018; 28:2672–2686. doi: 10.1007/s11695-018-3216-x.
doi: 10.1007/s11695-018-3216-x
Jansen PL, van Werven J, Aarts E, Berends F, Janssen I, Stoker J, et al. Alterations of hormonally active fibroblast growth factors after Roux-en-Y gastric bypass surgery. Dig Dis 2011; 29:48–51. doi: 10.1159/000324128.
doi: 10.1159/000324128
Matsubara T, Li F, Gonzalez FJ. FXR signaling in the enterohepatic system. Mol Cell Endocrinol 2013; 368:17–29. doi: 10.1016/j.mce.2012.05.004.
doi: 10.1016/j.mce.2012.05.004
Somm E, Jornayvaz FR. Fibroblast growth factor 15/19: from basic functions to therapeutic perspectives. Endocr Rev 2018; 39:960–989. doi: 10.1210/er.2018-00134.
doi: 10.1210/er.2018-00134
Pournaras DJ, Glicksman C, Vincent RP, Kuganolipava S, Alaghband-Zadeh J, Mahon D, et al. The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology 2012; 153:3613–3619. doi: 10.1210/en.2011-2145.
doi: 10.1210/en.2011-2145
Dutia R, Embrey M, O’Brien CS, Haeusler RA, Agenor KK, Homel P, et al. Temporal changes in bile acid levels and 12alpha-hydroxylation after Roux-en-Y gastric bypass surgery in type 2 diabetes. Int J Obes (Lond) 2015; 39:806–813. doi: 10.1038/ijo.2015.1.
doi: 10.1038/ijo.2015.1
Sachdev S, Wang Q, Billington C, Connett J, Ahmed L, Inabnet W, et al. FGF 19 and bile acids increase following Roux-en-Y gastric bypass but not after medical management in patients with type 2 diabetes. Obes Surg 2016; 26:957–965. doi: 10.1007/s11695-015-1834-0.
doi: 10.1007/s11695-015-1834-0
Nielsen S, Svane MS, Kuhre RE, Clausen TR, Kristiansen VB, Rehfeld JF, et al. Chenodeoxycholic acid stimulates glucagon-like peptide-1 secretion in patients after Roux-en-Y gastric bypass. Physiol Rep 2017; 5:e13140doi: 10.14814/phy2.13140.
doi: 10.14814/phy2.13140
Mulla CM, Goldfine AB, Dreyfuss JM, Houten S, Pan H, Pober DM, et al. Plasma FGF-19 levels are increased in patients with post-bariatric hypoglycemia. Obes Surg 2019; 29:2092–2099. doi: 10.1007/s11695-019-03845-0.
doi: 10.1007/s11695-019-03845-0
Jorgensen NB, Dirksen C, Bojsen-Moller KN, Kristiansen VB, Wulff BS, Rainteau D, et al. Improvements in glucose metabolism early after gastric bypass surgery are not explained by increases in total bile acids and fibroblast growth factor 19 concentrations. J Clin Endocrinol Metab 2015; 100:E396–E406. doi: 10.1210/jc.2014-1658.
doi: 10.1210/jc.2014-1658
Fuller M, Priyadarshini M, Gibbons SM, Angueira AR, Brodsky M, Hayes MG, et al. The short-chain fatty acid receptor, FFA2, contributes to gestational glucose homeostasis. Am J Physiol Endocrinol Metab 2015; 309:E840–E851. doi: 10.1152/ajpendo.00171.2015.
doi: 10.1152/ajpendo.00171.2015
Hernandez MAG, Canfora EE, Jocken JWE, Blaak EE. The short-chain fatty acid acetate in body weight control and insulin sensitivity. Nutrients 2019; 11:1943doi: 10.3390/nu11081943.
doi: 10.3390/nu11081943
Nishitsuji K, Xiao J, Nagatomo R, Umemoto H, Morimoto Y, Akatsu H, et al. Analysis of the gut microbiome and plasma short-chain fatty acid profiles in a spontaneous mouse model of metabolic syndrome. Sci Rep 2017; 7:15876doi: 10.1038/s41598-017-16189-5.
doi: 10.1038/s41598-017-16189-5
Gribble FM, Reimann F. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat Rev Endocrinol 2019; 15:226–237. doi: 10.1038/s41574-019-0168-8.
doi: 10.1038/s41574-019-0168-8
Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science (New York, NY) 2018; 359:1151–1156. doi: 10.1126/science.aao5774.
doi: 10.1126/science.aao5774
Roshanravan N, Mahdavi R, Alizadeh E, Jafarabadi MA, Hedayati M, Ghavami A, et al. Effect of butyrate and inulin supplementation on glycemic status, lipid profile and glucagon-like peptide 1 level in patients with type 2 diabetes: a randomized double-blind, placebo-controlled trial. Horm Metab Res 2017; 49:886–891. doi: 10.1055/s-0043-119089.
doi: 10.1055/s-0043-119089
Bueter M, Löwenstein C, Olbers T, Wang M, Cluny NL, Bloom SR, et al. Gastric bypass increases energy expenditure in rats. Gastroenterology 2010; 138:1845–1853. doi: 10.1053/j.gastro.2009.11.012.
doi: 10.1053/j.gastro.2009.11.012
Nestoridi E, Kvas S, Kucharczyk J, Stylopoulos N. Resting energy expenditure and energetic cost of feeding are augmented after Roux-en-Y gastric bypass in obese mice. Endocrinology 2012; 153:2234–2244. doi: 10.1210/en.2011-2041.
doi: 10.1210/en.2011-2041
Kellogg TA, Bantle JP, Leslie DB, Redmond JB, Slusarek B, Swan T, et al. Postgastric bypass hyperinsulinemic hypoglycemia syndrome: characterization and response to a modified diet. Surg Obes Relat Dis 2008; 4:492–499. doi: 10.1016/j.soard.2008.05.005.
doi: 10.1016/j.soard.2008.05.005
Lembo E, Lupoli R, Ciciola P, Creanza A, Silvestri E, Saldalamacchia G, et al. Implementation of low glycemic index diet together with cornstarch in post-gastric bypass hypoglycemia: two case reports. Nutrients 2018; 10:670doi: 10.3390/nu10060670.
doi: 10.3390/nu10060670
Nielsen JB, Abild CB, Pedersen AM, Pedersen SB, Richelsen B. Continuous glucose monitoring after gastric bypass to evaluate the glucose variability after a low-carbohydrate diet and to determine hypoglycemia. Obes Surg 2016; 26:2111–2118. doi: 10.1007/s11695-016-2058-7.
doi: 10.1007/s11695-016-2058-7
van Meijeren J, Timmer I, Brandts H, Janssen I, Boer H. Evaluation of carbohydrate restriction as primary treatment for post-gastric bypass hypoglycemia. Surg Obes Relat Dis 2017; 13:404–410. doi: 10.1016/j.soard.2016.11.004.
doi: 10.1016/j.soard.2016.11.004
Ames A, Lago-Hernandez CA, Grunvald E. Hypoglycemia after gastric bypass successfully treated with calcium channel blockers: two case reports. J Endocr Soc 2019; 3:1417–1422. doi: 10.1210/js.2019-00097.
doi: 10.1210/js.2019-00097
Gonzalez-Gonzalez A, Delgado M, Fraga-Fuentes MD. Use of diazoxide in management of severe postprandial hypoglycemia in patient after Roux-en-Y gastric bypass. Surg Obes Relat Dis 2013; 9:e18–e19. doi: 10.1016/j.soard.2011.05.010.
doi: 10.1016/j.soard.2011.05.010
Spanakis E, Gragnoli C. Successful medical management of status post-Roux-en-Y-gastric-bypass hyperinsulinemic hypoglycemia. Obes Surg 2009; 19:1333–1334. doi: 10.1007/s11695-009-9888-5.
doi: 10.1007/s11695-009-9888-5
Myint KS, Greenfield JR, Farooqi IS, Henning E, Holst JJ, Finer N. Prolonged successful therapy for hyperinsulinaemic hypoglycaemia after gastric bypass: the pathophysiological role of GLP1 and its response to a somatostatin analogue. Eur J Endocrinol 2012; 166:951–955. doi: 10.1530/eje-11-1065.
doi: 10.1530/eje-11-1065
Abrahamsson N, Engstrom BE, Sundbom M, Karlsson FA. GLP1 analogs as treatment of postprandial hypoglycemia following gastric bypass surgery: a potential new indication? Eur J Endocrinol 2013; 169:885–889. doi: 10.1530/eje-13-0504.
doi: 10.1530/eje-13-0504

Auteurs

Li-Yuan Zhou (LY)

Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH