Molecular profiling of lipid droplets inside HuH7 cells with Raman micro-spectroscopy.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
10 07 2020
10 07 2020
Historique:
received:
05
03
2020
accepted:
22
06
2020
entrez:
12
7
2020
pubmed:
12
7
2020
medline:
22
6
2021
Statut:
epublish
Résumé
Raman imaging has become an attractive technology in molecular biology because of its ability to detect multiple molecular components simultaneously without labeling. Two major limitations in accurately accounting for spectral features, viz., background removal and spectral unmixing, have been overcome by employing a modified and effective routine in multivariate curve resolution (MCR). With our improved strategy, we have spectrally isolated seven structurally specific biomolecules without any post-acquisition spectral treatments. Consequently, the isolated intensity profiles reflected concentrations of corresponding biomolecules with high statistical accuracy. Our study reveals the changes in the molecular composition of lipid droplets (LDs) inside HuH7 cells and its relation to the physiological state of the cell. Further, we show that the accurate separation of spectral components permits analysis of structural modification of molecules after cellular uptake. A detailed discussion is presented to highlight the potential of Raman spectroscopy with MCR in semi-quantitative molecular profiling of living cells.
Identifiants
pubmed: 32651434
doi: 10.1038/s42003-020-1100-4
pii: 10.1038/s42003-020-1100-4
pmc: PMC7351753
doi:
Substances chimiques
Oleic Acid
2UMI9U37CP
Cholesterol
97C5T2UQ7J
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
372Références
Guo, Y., Cordes, K. R., Farese, R. V. Jr. & Walther, T. C. Lipid droplets at a glance. J. Cell. Sci. 122, 749–752 (2009).
pubmed: 19261844
pmcid: 2714424
doi: 10.1242/jcs.037630
Thiam, A. R., Farese, R. V. Jr. & Walther, T. C. The biophysics and cell biology of lipid droplets. Nat. Rev. Mol. Cell. Biol. 14, 775–786 (2013).
pubmed: 24220094
pmcid: 4526153
doi: 10.1038/nrm3699
Welte, M. A. Expanding roles for lipid droplets. Curr. Biol. 25, R470–R481 (2015).
pubmed: 26035793
pmcid: 4452895
doi: 10.1016/j.cub.2015.04.004
Ohsaki, Y., Cheng, J., Fujita, A., Tokumoto, T. & Fujimoto, T. Cytoplasmic lipid droplets are sites of convergence of proteasomal and autophagic degradation of apolipoprotein B. Mol. Biol. Cell 17, 2674–2683 (2006).
pubmed: 16597703
pmcid: 1474802
doi: 10.1091/mbc.e05-07-0659
Welte, M. A. Proteins under new management: lipid droplets deliver. Trends Cell Biol. 17, 363–369 (2007).
pubmed: 17766117
doi: 10.1016/j.tcb.2007.06.004
pmcid: 17766117
Krahmer, N., Farese, R. V. Jr. & Walther, T. C. Balancing the fat: lipid droplets and human disease. EMBO Mol. Med. 5, 905–915 (2013).
pmcid: 3721468
doi: 10.1002/emmm.201100671
Miyanari, Y. et al. The lipid droplet is an important organelle for hepatitis C virus production. Nat. Cell Biol. 9, 1089–1097 (2007).
pubmed: 17721513
doi: 10.1038/ncb1631
pmcid: 17721513
Tirinato, L. et al. An overview of lipid droplets in cancer and cancer stem cells. Stem Cells Int. 2017, 1656053 (2017).
pubmed: 28883835
pmcid: 5572636
doi: 10.1155/2017/1656053
Cermelli, S., Guo, Y., Gross, S. P. & Welte, M. A. The lipid droplet proteome reveals that droplets are a protein storage depot. Curr. Biol. 16, 1783–1795 (2006).
pubmed: 16979555
doi: 10.1016/j.cub.2006.07.062
pmcid: 16979555
Ueno, M. et al. Fat-specific protein 27 modulates nuclear factor of activated T cells 5 and the cellular response to stress. J. Lipid Res. 54, 734–743 (2013).
pubmed: 23233732
pmcid: 3617947
doi: 10.1194/jlr.M033365
Krahmer, N. et al. Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase. Cell Metab. 14, 504–515 (2011).
pubmed: 21982710
pmcid: 3735358
doi: 10.1016/j.cmet.2011.07.013
Krahmer, N. et al. Protein correlation profiles identify lipid droplet proteins with high confidence. Mol. Cell Proteom. 12, 1115–1126 (2013).
doi: 10.1074/mcp.M112.020230
Greenspan, P., Mayer, E. P. & Fowler, S. D. Nile red: a selective fluorescent stain for intracellular lipid droplets. J. Cell Biol. 100, 965–973 (1985).
doi: 10.1083/jcb.100.3.965
Spandl, J., White, D. J., Peychl, J. & Thiele, C. Live cell multicolor imaging of lipid droplets with a new dye, LD540. Traffic 10, 1579–1584 (2009).
pubmed: 19765264
doi: 10.1111/j.1600-0854.2009.00980.x
pmcid: 19765264
Hofmann, K. et al. A. novel alkyne cholesterol to trace cellular cholesterol metabolism and localization. J. Lipid Res. 55, 583–91 (2014).
pubmed: 24334219
pmcid: 3934742
doi: 10.1194/jlr.D044727
Gaebler, A. et al. Alkyne lipids as substrates for click chemistry-based in vitro enzymatic assay. J. Lipid Res. 54, 2282–2290 (2013).
pubmed: 23709689
pmcid: 3708378
doi: 10.1194/jlr.D038653
Kuerschner, L. et al. Polyene-lipids: a new tool to image lipids. Nat. Methods 2, 39–45 (2005).
pubmed: 15782159
doi: 10.1038/nmeth728
pmcid: 15782159
Schie, I. W. & Huser, T. Methods and applications of Raman microspectroscopy to single-cell analysis. Appl. Spectrosc. 67, 813–828 (2013).
pubmed: 23876720
doi: 10.1366/12-06971
pmcid: 23876720
Pezacki, J. P. et al. Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy. Nat. Chem. Biol. 7, 137–145 (2011).
pubmed: 21321552
pmcid: 7098185
doi: 10.1038/nchembio.525
Fu, Y., Wang, H. F., Shi, R. Y. & Cheng, J. X. Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy. Opt. Exp. 14, 3942–3951 (2006).
doi: 10.1364/OE.14.003942
Freudiger, C. W. et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322, 1857–1861 (2008).
pubmed: 19095943
pmcid: 3576036
doi: 10.1126/science.1165758
Nan, X., Cheng, J. X. & Xie, X. S. Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy. J. Lipid Res. 44, 2202–2208 (2003).
pubmed: 12923234
doi: 10.1194/jlr.D300022-JLR200
pmcid: 12923234
Cheng, J. X., Volkmer, A. & Xie, X. S. Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy. J. Opt. Soc. Am. B 19, 1363–1375 (2002).
doi: 10.1364/JOSAB.19.001363
Jaeger, D. et al. Label-free in vivo analysis of intracellular lipid droplets in the oleaginous microalga Monoraphidium neglectum by coherent Raman scattering microscopy. Sci. Rep. 6, 35340 (2016).
pubmed: 27767024
pmcid: 5073319
doi: 10.1038/srep35340
Hellere, T. et al. Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS). Microsc. Proc. Nat. Acad. Sci. 104, 14658–14663 (2007).
doi: 10.1073/pnas.0703594104
Manen, H. J., Kraan, Y. M., Roos, D. & Otto, C. Single-cell Raman and fluorescence microscopy reveal the association of lipid bodies with phagosomes in leukocytes. Proc. Nat. Acad. Sci. 102, 10159–10164 (2005).
pubmed: 16002471
doi: 10.1073/pnas.0502746102
pmcid: 16002471
Ando, M. & Hamaguchi, H. Molecular component distribution imaging of living cells by multivariate curve resolution analysis of space-resolved Raman spectra. J. Biomed. Opt. 19, 011016 (2013).
doi: 10.1117/1.JBO.19.1.011016
Chen, P. H. et al. Automatic and objective oral cancer diagnosis by Raman spectroscopic detection of keratin with multivariate curve resolution analysis. Sci. rep. 6, 20097 (2016).
pubmed: 26806007
pmcid: 4726139
doi: 10.1038/srep20097
Samuel, A. Z. et al. Determination of percent crystallinity of side-chain crystallized Alkylated-Dextran derivatives with Raman spectroscopy and multivariate curve resolution. Anal. Chem. 88, 4644–4650 (2016).
pubmed: 27054590
doi: 10.1021/acs.analchem.5b04075
pmcid: 27054590
Felten, J. et al. Vibrational spectroscopic image analysis of biological material using multivariate curve resolution–alternating least squares (MCR-ALS). Nat. Protoc. 10, 217–240 (2015).
pubmed: 25569330
doi: 10.1038/nprot.2015.008
pmcid: 25569330
Fujimoto, Y. et al. Long-chain fatty acids induce lipid droplet formation in a cultured human hepatocyte in a manner dependent of Acyl-CoA synthetase. Biol. Pharm. Bull. 29, 2174–2180 (2006).
pubmed: 17077510
doi: 10.1248/bpb.29.2174
pmcid: 17077510
Makino, A. et al. Acute accumulation of free cholesterol induces the degradation of perilipin 2 and Rab18-dependent fusion of ER and lipid droplets in cultured human hepatocytes. Mol. Biol. Cell. 27, 3293–3304 (2016).
pubmed: 27582390
pmcid: 5170862
doi: 10.1091/mbc.E15-10-0730
Czamara, K. et al. Raman spectroscopy of lipids: a review. J. Raman Spectrosc. 46, 4–20 (2015).
doi: 10.1002/jrs.4607
Bolte, S. & Cordelieres, F. P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224, 213–232 (2006).
doi: 10.1111/j.1365-2818.2006.01706.x
Tuma, R. Raman spectroscopy of proteins: from peptides to large assemblies. J. Raman Spectrosc. 36, 307–319 (2005).
doi: 10.1002/jrs.1323
Prescott., B., Steinmetz, W. & Thomas, G. J. Jr. Characterization of DNA structures by laser Raman spectroscopy. Biopolymers 23, 235–256 (1984).
pubmed: 6704487
doi: 10.1002/bip.360230206
pmcid: 6704487
Roingeard, P., Hourioux, C., Blanchard, E. & Prensier, G. Hepatitis C virus budding at lipid droplet-associated ER membrane visualized by 3D electron microscopy. Histochem. Cell Biol. 130, 561–566 (2008).
pubmed: 18512067
doi: 10.1007/s00418-008-0447-2
pmcid: 18512067
Horke, S., Reumann, K., Schweizer, M., Will, H. & Heise, T. Nuclear trafficking of La Protein depends on a newly identified nucleolar localization signal and the ability to bind RNA. J. Biol. Chem. 279, 26563–26570 (2004).
pubmed: 15060081
doi: 10.1074/jbc.M401017200
pmcid: 15060081
Stitham, J., Midgett, C., Martin, K. A. & Hwa, J. Prostacyclin: an inflammatory paradox. Front. Pharmacol. 2, 1–8 (2011).
doi: 10.3389/fphar.2011.00024
Czamara, K. et al. Unsaturated lipid bodies as a hallmark of inflammation studied by Raman 2D and 3D microscopy. Sci. Rep. 7, 40889 (2017).
pubmed: 28098251
pmcid: 5241649
doi: 10.1038/srep40889
Tall, A. R. & Charvet, L. Y. Cholesterol, inflammation and innate immunity. Nat. Rev. Immunol. 15, 104–116 (2015).
pubmed: 25614320
pmcid: 4669071
doi: 10.1038/nri3793
Tirinato, L. et al. Lipid droplets: a new player in colorectal cancer stem cells unveiled by spectroscopic imaging. Stem Cells 33, 35–44 (2015).
pubmed: 25186497
doi: 10.1002/stem.1837
pmcid: 25186497
Amaral, K. B. et al. Natural Schistosoma mansoni infection in the wild reservoir Nectomys squamipes leads to excessive lipid droplet accumulation in hepatocytes in the absence of liver functional impairment. Plos One 11, e0166979 (2016).
pubmed: 27880808
pmcid: 5120838
doi: 10.1371/journal.pone.0166979
Majzner, K. et al. Raman imaging providing insights into chemical composition of lipid droplets of different size and origin: in hepatocytes and endothelium. Anal. Chem. 86, 6666–6674 (2014).
pubmed: 24936891
doi: 10.1021/ac501395g
pmcid: 24936891
Schie, I. W., Wu, J., Zern, M., Rutledge, J. C. & Huser, T. Label-free characterization of rapid lipid accumulation in living primary hepatocytes after exposure to lipoprotein lipolysis products. J. Biophotonics 4, 425–434 (2011).
pubmed: 20878906
doi: 10.1002/jbio.201000086
pmcid: 20878906
Majzner, K. et al. Uptake of fatty acids by a single endothelial cell investigated by Raman spectroscopy supported by AFM. Analyst 143, 970–980 (2018).
pubmed: 29372724
doi: 10.1039/C7AN01043E
pmcid: 29372724
Stiebing, C. et al. Complexity of fatty acid distribution inside human macrophages on single cell level using Raman micro-spectroscopy. Anal. Bioanal. Chem. 406, 7037–7046 (2014).
pubmed: 24939132
doi: 10.1007/s00216-014-7927-0
pmcid: 24939132
Heraud, P. et al. Label-free in vivo Raman microspectroscopic imaging of the macromolecular architecture of oocytes. Sci. Rep. 7, 8945 (2017).
pubmed: 28827720
pmcid: 5566217
doi: 10.1038/s41598-017-08973-0