Nodes of Ranvier during development and repair in the CNS.
Journal
Nature reviews. Neurology
ISSN: 1759-4766
Titre abrégé: Nat Rev Neurol
Pays: England
ID NLM: 101500072
Informations de publication
Date de publication:
08 2020
08 2020
Historique:
accepted:
04
06
2020
pubmed:
12
7
2020
medline:
18
1
2022
entrez:
12
7
2020
Statut:
ppublish
Résumé
Saltatory conduction of action potentials along myelinated axons depends on the nodes of Ranvier - small unmyelinated axonal domains where voltage-gated sodium channels are concentrated. Our knowledge of the complex molecular composition of these axonal domains continues to accumulate, although the mechanisms of nodal assembly, which have been elucidated in the PNS, remain only partially understood in the CNS. Besides the key role of the nodes in accelerating conduction, nodal variations are thought to allow the fine tuning of axonal conduction speed to meet information processing needs. In addition, through their multiple glial contacts, nodes seem to be important for neuron-glia interactions. As we highlight in this Review, the disorganization of axonal domains has been implicated in the pathophysiology of various neurological diseases. In multiple sclerosis, for example, nodal and perinodal disruption following demyelination, with subsequent changes in ion channel distribution, leads to altered axonal conduction and integrity. The nodal clusters regenerate concurrently with but also prior to remyelination, allowing the restoration of axonal conduction. In this article, we review current knowledge of the organization and function of nodes of Ranvier in the CNS. We go on to discuss dynamic changes in the nodes during demyelination and remyelination, highlighting the impact of these changes on neuronal physiology in health and disease as well as the associated therapeutic implications.
Identifiants
pubmed: 32651566
doi: 10.1038/s41582-020-0375-x
pii: 10.1038/s41582-020-0375-x
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
426-439Références
Poliak, S. & Peles, E. The local differentiation of myelinated axons at nodes of Ranvier. Nat. Rev. Neurosci. 4, 968–980 (2003).
pubmed: 14682359
Faivre-Sarrailh, C. & Devaux, J. J. Neuro-glial interactions at the nodes of Ranvier: implication in health and diseases. Front. Cell. Neurosci. 7, 196 (2013).
pubmed: 24194699
pmcid: 3810605
Rasband, M. N. & Peles, E. The nodes of Ranvier: molecular assembly and maintenance. Cold Spring Harb. Perspect. Biol. 8, a020495 (2015).
pubmed: 26354894
Salzer, J. L., Brophy, P. J. & Peles, E. Molecular domains of myelinated axons in the peripheral nervous system. Glia 56, 1532–1540 (2008).
pubmed: 18803321
Brohawn, S. G. et al. The mechanosensitive ion channel TRAAK is localized to the mammalian node of Ranvier. eLife 8, e50403 (2019).
pubmed: 31674909
pmcid: 6824864
Kanda, H. et al. TREK-1 and TRAAK are principal K
pubmed: 31630908
Seidl, A. H. Regulation of conduction time along axons. Neuroscience 276, 126–134 (2014).
pubmed: 23820043
Arancibia-Carcamo, I. L. & Attwell, D. The node of Ranvier in CNS pathology. Acta Neuropathol. 128, 161–175 (2014).
pubmed: 24913350
pmcid: 4102831
Ranvier, L. Contribution à l’histologie et à la physiologie des nerfs périphériques [French]. C. R. Acad. Sci. 73, 1168–1171 (1871).
Ranvier, L-A. Leçons sur l’Histologie du Système Nerveux, par M. L. Ranvier, recueillies par M. Ed. Weber (Librairie F. Savy, 1878).
Lillie, R. S. Factors affecting transmission and recovery in the passive iron nerve model. J. Gen. Physiol. 7, 473–507 (1925).
pubmed: 19872151
pmcid: 2140733
Peters, A. The formation and structure of myelin sheaths in the central nervous system. J. Biophys. Biochem. Cytol. 8, 431–446 (1960).
pubmed: 13734758
pmcid: 2224948
Uzman, B. G. & Villegas, G. M. A comparison of nodes of Ranvier in sciatic nerves with node-like structures in optic nerves of the mouse. J. Biophys. Biochem. Cytol. 7, 761–762 (1960).
pubmed: 13840578
pmcid: 2224886
Metuzals, J. Ultrastructure of myelinated nerve fibers in the central nervous system of the frog. J. Ultrastruct. Res. 8, 30–47 (1963)
pubmed: 13935199
Salzer, J. L. Polarized domains of myelinated axons. Neuron 40, 297–318 (2003).
pubmed: 14556710
Arancibia-Carcamo, I. L. et al. Node of Ranvier length as a potential regulator of myelinated axon conduction speed. eLife 6, e23329 (2017).
pubmed: 28130923
pmcid: 5313058
Micheva, K. D. et al. A large fraction of neocortical myelin ensheathes axons of local inhibitory neurons. eLife 5, e15784 (2016).
pubmed: 27383052
pmcid: 4972537
Micheva, K. D. et al. Distinctive structural and molecular features of myelinated inhibitory axons in human neocortex. eNeuro 5, ENEURO.0297-18.2018 (2018).
Landon, D. N. & Williams, P. L. Ultrastructure of the node of Ranvier. Nature 199, 575–577 (1963).
pubmed: 14072007
Pannese, E. Neurocytology: Fine Structure of Neurons, Nerve Processes, and Neuroglial Cells (Springer International Publishing, 2015).
Ford, M. C. et al. Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing. Nat. Commun. 6, 8073–8073 (2015).
pubmed: 26305015
pmcid: 4560803
Rosenbluth, J. Electrophysiology and morphology of myelinated nerve fibers. V. Intramembranous particle distribution in nerve fiber membranes. Experientia 39, 953–963 (1983).
pubmed: 6350037
Edgar, J. M., McCulloch, M. C., Thomson, C. E. & Griffiths, I. R. Distribution of mitochondria along small-diameter myelinated central nervous system axons. J. Neurosci. Res. 86, 2250–2257 (2008).
pubmed: 18381760
Ohno, N. et al. Myelination and axonal electrical activity modulate the distribution and motility of mitochondria at CNS nodes of Ranvier. J. Neurosci. 31, 7249–7258 (2011).
pubmed: 21593309
pmcid: 3139464
D’Este, E. et al. Subcortical cytoskeleton periodicity throughout the nervous system. Sci. Rep. 6, 22741 (2016).
pubmed: 26947559
pmcid: 4779989
D’Este, E., Kamin, D., Balzarotti, F. & Hell, S. W. Ultrastructural anatomy of nodes of Ranvier in the peripheral nervous system as revealed by STED microscopy. Proc. Natl Acad. Sci. USA 114, E191–E199 (2017).
pubmed: 28003466
Black, J. A. & Waxman, S. G. The perinodal astrocyte. Glia 1, 169–183 (1988).
pubmed: 2976037
Butt, A. M., Duncan, A. & Berry, M. Astrocyte associations with nodes of Ranvier: ultrastructural analysis of HRP-filled astrocytes in the mouse optic nerve. J. Neurocytol. 23, 486–499 (1994).
pubmed: 7983475
Butt, A. M. et al. Cells expressing the NG2 antigen contact nodes of Ranvier in adult CNS white matter. Glia 26, 84–91 (1999).
pubmed: 10088675
Serwanski, D. R., Jukkola, P. & Nishiyama, A. Heterogeneity of astrocyte and NG2 cell insertion at the node of Ranvier. J. Comp. Neurol. 525, 535–552 (2017).
pubmed: 27448245
Ffrench-Constant, C., Miller, R. H., Kruse, J., Schachner, M. & Raff, M. C. Molecular specialization of astrocyte processes at nodes of Ranvier in rat optic nerve. J. Cell Biol. 102, 844–852 (1986).
pubmed: 2419343
Dutta, D. J. et al. Regulation of myelin structure and conduction velocity by perinodal astrocytes. Proc. Natl Acad. Sci. USA 115, 11832–11837 (2018).
pubmed: 30373833
Hildebrand, C. & Waxman, S. G. Postnatal differentiation of rat optic nerve fibers: electron microscopic observations on the development of nodes of Ranvier and axoglial relations. J. Comp. Neurol. 224, 25–37 (1984).
pubmed: 6715578
De Biase, L. M., Pucak, M. L., Kang, S. H., Rodriguez, S. N. & Bergles, D. E. Sparse interaction between oligodendrocyte precursor cells (NG2
doi: 10.1101/185801
Zhang, J., Yang, X., Zhou, Y., Fox, H. & Xiong, H. Direct contacts of microglia on myelin sheath and Ranvier’s node in the corpus callosum in rats. J. Biomed. Res. 33, 192–200 (2019).
pubmed: 30403198
Oohashi, T., Edamatsu, M., Bekku, Y. & Carulli, D. The hyaluronan and proteoglycan link proteins: Organizers of the brain extracellular matrix and key molecules for neuronal function and plasticity. Exp. Neurol. 274, 134–144 (2015).
pubmed: 26387938
Dermietzel, R. Junctions in the central nervous system of the cat. II. A contribution to the tertiary structure of the axonal-glial junctions in the paranodal region of the node of Ranvier. Cell Tissue Res. 148, 577–586 (1974).
pubmed: 4836650
Rosenbluth, J., Petzold, C. & Peles, E. Dependence of paranodal junctional gap width on transverse bands. J. Comp. Neurol. 520, 2774–2784 (2012).
pubmed: 22434587
Waxman, S. G. & Ritchie, J. M. Molecular dissection of the myelinated axon. Ann. Neurol. 33, 121–136 (1993).
pubmed: 7679565
Catterall, W. A. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26, 13–25 (2000).
pubmed: 10798388
Patton, D. E., Isom, L. L., Catterall, W. A. & Goldin, A. L. The adult rat brain beta 1 subunit modifies activation and inactivation gating of multiple sodium channel alpha subunits. J. Biol. Chem. 269, 17649–17655 (1994).
pubmed: 8021275
Isom, L. L. et al. Structure and function of the beta 2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM motif. Cell 83, 433–442 (1995).
pubmed: 8521473
Chen, C. et al. Reduced sodium channel density, altered voltage dependence of inactivation, and increased susceptibility to seizures in mice lacking sodium channel β2-subunits. Proc. Natl Acad. Sci. USA 99, 17072 (2002).
pubmed: 12481039
Namadurai, S. et al. A new look at sodium channel β subunits. Open Biol. 5, 140192 (2015).
pubmed: 25567098
pmcid: 4313373
Lopez-Santiago, L. F. et al. Sodium channel beta 2 subunits regulate tetrodotoxin-sensitive sodium channels in small dorsal root ganglion neurons and modulate the response to pain. J. Neurosci. 26, 7984–7994 (2006).
pubmed: 16870743
pmcid: 6674206
Duflocq, A., Le Bras, B., Bullier, E., Couraud, F. & Davenne, M. Nav1.1 is predominantly expressed in nodes of Ranvier and axon initial segments. Mol. Cell. Neurosci. 39, 180–192 (2008).
pubmed: 18621130
Van Wart, A. & Matthews, G. Impaired firing and cell-specific compensation in neurons lacking nav1.6 sodium channels. J. Neurosci. 26, 7172–7180 (2006).
pubmed: 16822974
pmcid: 6673932
Ogiwara, I. et al. Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. J. Neurosci. 27, 5903–5914 (2007).
pubmed: 17537961
pmcid: 6672241
Lorincz, A. & Nusser, Z. Cell-type-dependent molecular composition of the axon initial segment. J. Neurosci. 28, 14329–14340 (2008).
pubmed: 19118165
pmcid: 2628579
Tian, C., Wang, K., Ke, W., Guo, H. & Shu, Y. Molecular identity of axonal sodium channels in human cortical pyramidal cells. Front. Cell. Neurosci. 8, 297–297 (2014).
pubmed: 25294986
pmcid: 4172021
Van Wart, A., Trimmer, J. S. & Matthews, G. Polarized distribution of ion channels within microdomains of the axon initial segment. J. Comp. Neurol. 500, 339–352 (2007).
pubmed: 17111377
Schaller, K. L. & Caldwell, J. H. Expression and distribution of voltage-gated sodium channels in the cerebellum. Cerebellum 2, 2–9 (2003).
pubmed: 12882229
Caldwell, J. H., Schaller, K. L., Lasher, R. S., Peles, E. & Levinson, S. R. Sodium channel Na(v)1.6 is localized at nodes of Ranvier, dendrites, and synapses. Proc. Natl Acad. Sci. USA 97, 5616–5620 (2000).
pubmed: 10779552
Tzoumaka, E. et al. Differential distribution of the tetrodotoxin-sensitive rPN4/NaCh6/Scn8a sodium channel in the nervous system. J. Neurosci. Res. 60, 37–44 (2000).
pubmed: 10723066
Schafer, D. P., Custer, A. W., Shrager, P. & Rasband, M. N. Early events in node of Ranvier formation during myelination and remyelination in the PNS. Neuron Glia Biol. 2, 69–79 (2006).
pubmed: 16652168
pmcid: 1424668
Boiko, T. et al. Compact myelin dictates the differential targeting of two sodium channel isoforms in the same axon. Neuron 30, 91–104 (2001).
pubmed: 11343647
Zhou, W. & Goldin, A. L. Use-dependent potentiation of the Nav1.6 sodium channel. Biophys. J. 87, 3862–3872 (2004).
pubmed: 15465873
pmcid: 1304897
Herzog, R. I., Liu, C., Waxman, S. G. & Cummins, T. R. Calmodulin binds to the C terminus of sodium channels Nav1.4 and Nav1.6 and differentially modulates their functional properties. J. Neurosci. 23, 8261–8270 (2003).
pubmed: 12967988
pmcid: 6740705
Arroyo, E. J. et al. Genetic dysmyelination alters the molecular architecture of the nodal region. J. Neurosci. 22, 1726–1737 (2002).
pubmed: 11880502
pmcid: 6758867
Kazen-Gillespie, K. A. et al. Cloning, localization, and functional expression of sodium channel beta1A subunits. J. Biol. Chem. 275, 1079–1088 (2000).
pubmed: 10625649
Buffington, S. A. & Rasband, M. N. Na
pubmed: 23554500
pmcid: 3643000
Chen, C. et al. Mice lacking sodium channel beta1 subunits display defects in neuronal excitability, sodium channel expression, and nodal architecture. J. Neurosci. 24, 4030–4042 (2004).
pubmed: 15102918
pmcid: 6729427
Ratcliffe, C. F., Westenbroek, R. E., Curtis, R. & Catterall, W. A. Sodium channel beta1 and beta3 subunits associate with neurofascin through their extracellular immunoglobulin-like domain. J. Cell Biol. 154, 427–434 (2001).
pubmed: 11470829
pmcid: 2150779
Kaplan, M. R. et al. Differential control of clustering of the sodium channels Na
pubmed: 11343648
Srinivasan, J., Schachner, M. & Catterall, W. A. Interaction of voltage-gated sodium channels with the extracellular matrix molecules tenascin-C and tenascin-R. Proc. Natl Acad. Sci. USA 95, 15753 (1998).
pubmed: 9861042
Patino, G. A. & Isom, L. L. Electrophysiology and beyond: multiple roles of Na
pubmed: 20600605
pmcid: 2964441
Malhotra, J. D. et al. Structural requirements for interaction of sodium channel beta 1 subunits with ankyrin. J. Biol. Chem. 277, 26681–26688 (2002).
pubmed: 11997395
Kim, D. Y. et al. BACE1 regulates voltage-gated sodium channels and neuronal activity. Nat. Cell Biol. 9, 755–764 (2007).
pubmed: 17576410
pmcid: 2747787
Devaux, J. J., Kleopa, K. A., Cooper, E. C. & Scherer, S. S. KCNQ2 is a nodal K
pubmed: 6793582
pmcid: 6793582
Pan, Z. et al. A common ankyrin-G-based mechanism retains KCNQ and NaV channels at electrically active domains of the axon. J. Neurosci. 26, 2599–2613 (2006).
pubmed: 16525039
pmcid: 6675151
Schwarz, J. R. et al. KCNQ channels mediate IKs, a slow K
pubmed: 16527853
pmcid: 1779690
Battefeld, A., Tran, B. T., Gavrilis, J., Cooper, E. C. & Kole, M. H. P. Heteromeric Kv7.2/7.3 channels differentially regulate action potential initiation and conduction in neocortical myelinated axons. J. Neurosci. 34, 3719–3732 (2014).
pubmed: 24599470
pmcid: 3942587
Devaux, J. et al. Kv3.1b is a novel component of CNS nodes. J. Neurosci. 23, 4509–4518 (2003).
pubmed: 12805291
pmcid: 6740813
Lien, C.-C. & Jonas, P. Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons. J. Neurosci. 23, 2058–2068 (2003).
pubmed: 12657664
pmcid: 6742035
Davis, J. Q., Lambert, S. & Bennett, V. Molecular composition of the node of Ranvier: identification of ankyrin-binding cell adhesion molecules neurofascin (mucin
pubmed: 8947556
Zhang, A. et al. Neurofascin 140 is an embryonic neuronal neurofascin isoform that promotes the assembly of the node of Ranvier. J. Neurosci. 35, 2246–2254 (2015).
pubmed: 25653379
pmcid: 4315843
Grumet, M., Mauro, V., Burgoon, M. P., Edelman, G. M. & Cunningham, B. A. Structure of a new nervous system glycoprotein, Nr-CAM, and its relationship to subgroups of neural cell adhesion molecules. J. Cell Biol. 113, 1399–1412 (1991).
pubmed: 2045418
Custer, A. W. et al. The role of the ankyrin-binding protein NrCAM in node of Ranvier formation. J. Neurosci. 23, 10032–10039 (2003).
pubmed: 14602817
pmcid: 6740847
Feinberg, K. et al. A glial signal consisting of gliomedin and NrCAM clusters axonal Na
pubmed: 20188654
pmcid: 2831809
Rios, J. C. et al. Contactin-associated protein (Caspr) and contactin form a complex that is targeted to the paranodal junctions during myelination. J. Neurosci. 20, 8354–8364 (2000).
pubmed: 11069942
pmcid: 6773165
Lustig, M. et al. Nr-CAM and neurofascin interactions regulate ankyrin G and sodium channel clustering at the node of Ranvier. Curr. Biol. 11, 1864–1869 (2001).
pubmed: 11728309
Labasque, M. & Faivre-Sarrailh, C. GPI-anchored proteins at the node of Ranvier. FEBS Lett. 584, 1787–1792 (2010).
pubmed: 19703450
Leterrier, C., Brachet, A., Dargent, B. & Vacher, H. Determinants of voltage-gated sodium channel clustering in neurons. Semin. Cell Dev. Biol. 22, 171–177 (2011).
pubmed: 20934527
Berghs, S. et al. betaIV spectrin, a new spectrin localized at axon initial segments and nodes of Ranvier in the central and peripheral nervous system. J. Cell Biol. 151, 985–1002 (2000).
pubmed: 11086001
pmcid: 2174349
Jenkins, S. M. & Bennett, V. Developing nodes of Ranvier are defined by ankyrin-G clustering and are independent of paranodal axoglial adhesion. Proc. Natl Acad. Sci. USA 99, 2303–2308 (2002).
pubmed: 11842202
Garrido, J. J. et al. A targeting motif involved in sodium channel clustering at the axonal initial segment. Science 300, 2091–2094 (2003).
pubmed: 12829783
Gasser, A. et al. An ankyrinG-binding motif is necessary and sufficient for targeting Nav1.6 sodium channels to axon initial segments and nodes of Ranvier. J. Neurosci. 32, 7232–7243 (2012).
pubmed: 22623668
pmcid: 3413458
Bekku, Y. & Oohashi, T. Neurocan contributes to the molecular heterogeneity of the perinodal ECM. Arch. Histol. Cytol. 73, 95–102 (2010).
pubmed: 21566336
Bekku, Y. et al. Bral1: its role in diffusion barrier formation and conduction velocity in the CNS. J. Neurosci. 30, 3113–3123 (2010).
pubmed: 20181608
pmcid: 6633924
Bekku, Y., Rauch, U., Ninomiya, Y. & Oohashi, T. Brevican distinctively assembles extracellular components at the large diameter nodes of Ranvier in the CNS. J. Neurochem. 108, 1266–1276 (2009).
pubmed: 19141078
Dours-Zimmermann, M. T. et al. Versican V2 assembles the extracellular matrix surrounding the nodes of Ranvier in the CNS. J. Neurosci. 29, 7731–7742 (2009).
pubmed: 19535585
pmcid: 6665632
Hedstrom, K. L. et al. Neurofascin assembles a specialized extracellular matrix at the axon initial segment. J. Cell Biol. 178, 875–886 (2007).
pubmed: 17709431
pmcid: 2064550
Susuki, K. et al. Three mechanisms assemble central nervous system nodes of Ranvier. Neuron 78, 469–482 (2013).
pubmed: 23664614
pmcid: 3756512
Zimmermann, D. R. & Dours-Zimmermann, M. T. Extracellular matrix of the central nervous system: from neglect to challenge. Histochem. Cell Biol. 130, 635–653 (2008).
pubmed: 18696101
Melendez-Vasquez, C. et al. Differential expression of proteoglycans at central and peripheral nodes of Ranvier. Glia 52, 301–308 (2005).
pubmed: 16035076
Weber, P. et al. Mice deficient for tenascin-R display alterations of the extracellular matrix and decreased axonal conduction velocities in the CNS. J. Neurosci. 19, 4245–4262 (1999).
pubmed: 10341229
pmcid: 6782606
Bartsch, U., Bartsch, S., Dörries, U. & Schachner, M. Immunohistological localization of tenascin in the developing and lesioned adult mouse optic nerve. Eur. J. Neurosci. 4, 338–352 (1992).
pubmed: 12106360
Fawcett, J. W., Oohashi, T. & Pizzorusso, T. The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function. Nat. Rev. Neurosci. 20, 451–465 (2019).
pubmed: 31263252
Susuki, K. & Rasband, M. N. Molecular mechanisms of node of Ranvier formation. Curr. Opin. Cell Biol. 20, 616–623 (2008).
pubmed: 18929652
pmcid: 2745093
Charles, P. et al. Neurofascin is a glial receptor for the paranodin/Caspr-contactin axonal complex at the axoglial junction. Curr. Biol. 12, 217–220 (2002).
pubmed: 11839274
Girault, J.-A. & Peles, E. Development of nodes of Ranvier. Curr. Opin. Neurobiol. 12, 476–485 (2002).
pubmed: 12367625
Bhat, M. A. et al. Axon-glia interactions and the domain organization of myelinated axons requires neurexin IV/Caspr/Paranodin. Neuron 30, 369–383 (2001).
pubmed: 11395000
Boyle, M. E. et al. Contactin orchestrates assembly of the septate-like junctions at the paranode in myelinated peripheral nerve. Neuron 30, 385–397 (2001).
pubmed: 11395001
Collinson, J. M., Marshall, D., Gillespie, C. S. & Brophy, P. J. Transient expression of neurofascin by oligodendrocytes at the onset of myelinogenesis: implications for mechanisms of axon-glial interaction. Glia 23, 11–23 (1998).
pubmed: 9562181
Einheber, S. et al. The axonal membrane protein Caspr, a homologue of neurexin IV, is a component of the septate-like paranodal junctions that assemble during myelination. J. Cell Biol. 139, 1495–1506 (1997).
pubmed: 9396755
pmcid: 2132621
Menegoz, M. et al. Paranodin, a glycoprotein of neuronal paranodal membranes. Neuron 19, 319–331 (1997).
pubmed: 9292722
Sherman, D. L. et al. Neurofascins are required to establish axonal domains for saltatory conduction. Neuron 48, 737–742 (2005).
pubmed: 16337912
Tait, S. et al. An oligodendrocyte cell adhesion molecule at the site of assembly of the paranodal axo-glial junction. J. Cell Biol. 150, 657–666 (2000).
pubmed: 10931875
pmcid: 2175192
Ogawa, Y. et al. Spectrins and ankyrinB constitute a specialized paranodal cytoskeleton. J. Neurosci. 26, 5230–5239 (2006).
pubmed: 16687515
pmcid: 6674250
Chang, K.-J. et al. Glial ankyrins facilitate paranodal axoglial junction assembly. Nat. Neurosci. 17, 1673–1681 (2014).
pubmed: 25362471
pmcid: 4260775
Rasband, M. N. Clustered K
pubmed: 20816921
pmcid: 2990350
Wang, H., Kunkel, D. D., Martin, T. M., Schwartzkroin, P. A. & Tempel, B. L. Heteromultimeric K
pubmed: 8361541
Vabnick, I. & Shrager, P. Ion channel redistribution and function during development of the myelinated axon. J. Neurobiol. 37, 80–96 (1998).
pubmed: 9777734
Traka, M. et al. Association of TAG-1 with Caspr2 is essential for the molecular organization of juxtaparanodal regions of myelinated fibers. J. Cell Biol. 162, 1161–1172 (2003).
pubmed: 12975355
pmcid: 2172849
Eshed-Eisenbach, Y. & Peles, E. The clustering of voltage-gated sodium channels in various excitable membranes. Dev. Neurobiol. https://doi.org/10.1002/dneu.22728 (2019).
Ghosh, A., Sherman, D. L. & Brophy, P. J. The axonal cytoskeleton and the assembly of nodes of Ranvier. Neuroscientist 24, 104–110 (2018).
pubmed: 28534438
Rasband, M. N. et al. Dependence of nodal sodium channel clustering on paranodal axoglial contact in the developing CNS. J. Neurosci. 19, 7516–7528 (1999).
pubmed: 10460258
pmcid: 6782503
Eshed-Eisenbach, Y. & Peles, E. The making of a node: a co-production of neurons and glia. Curr. Opin. Neurobiol. 23, 1049–1056 (2013).
pubmed: 23831261
Susuki, K., Otani, Y. & Rasband, M. N. Submembranous cytoskeletons stabilize nodes of Ranvier. Exp. Neurol. 283, 446–451 (2016).
pubmed: 26775177
Horresh, I., Bar, V., Kissil, J. L. & Peles, E. Organization of myelinated axons by Caspr and Caspr2 requires the cytoskeletal adapter protein 4.1B. J. Neurosci. 30, 2480–2489 (2010).
pubmed: 20164332
pmcid: 2836844
Zhang, C., Susuki, K., Zollinger, D. R., Dupree, J. L. & Rasband, M. N. Membrane domain organization of myelinated axons requires βII spectrin. J. Cell Biol. 203, 437–443 (2013).
pubmed: 24217619
pmcid: 3824014
Brivio, V., Faivre-Sarrailh, C., Peles, E., Sherman, D. L. & Brophy, P. J. Assembly of CNS nodes of Ranvier in myelinated nerves is promoted by the axon cytoskeleton. Curr. Biol. 27, 1068–1073 (2017).
pubmed: 28318976
pmcid: 5387178
Zonta, B. et al. Glial and neuronal isoforms of Neurofascin have distinct roles in the assembly of nodes of Ranvier in the central nervous system. J. Cell Biol. 181, 1169–1177 (2008).
pubmed: 18573915
pmcid: 2442198
Pillai, A. M. et al. Spatiotemporal ablation of myelinating glia-specific neurofascin (Nfasc NF155) in mice reveals gradual loss of paranodal axoglial junctions and concomitant disorganization of axonal domains. J. Neurosci. Res. 87, 1773–1793 (2009).
pubmed: 19185024
pmcid: 2837286
Rios, J. C. et al. Paranodal interactions regulate expression of sodium channel subtypes and provide a diffusion barrier for the node of Ranvier. J. Neurosci. 23, 7001–7011 (2003).
pubmed: 12904461
pmcid: 6740666
Kaplan, M. R. et al. Induction of sodium channel clustering by oligodendrocytes. Nature 386, 724–728 (1997).
pubmed: 9109490
Freeman, S. A. et al. Acceleration of conduction velocity linked to clustering of nodal components precedes myelination. Proc. Natl Acad. Sci. USA 112, E321–E328 (2015).
pubmed: 25561543
Dubessy, A.-L. et al. Role of a Contactin multi-molecular complex secreted by oligodendrocytes in nodal protein clustering in the CNS. Glia 67, 2248–2263 (2019).
pubmed: 31328333
pmcid: 6851800
Thetiot, M. et al. An alternative mechanism of early nodal clustering and myelination onset in GABAergic neurons of the central nervous system. Glia https://doi.org/10.1002/glia.23812 (2020).
Yang, Y., Ogawa, Y., Hedstrom, K. L. & Rasband, M. N. betaIV spectrin is recruited to axon initial segments and nodes of Ranvier by ankyrinG. J. Cell Biol. 176, 509–519 (2007).
pubmed: 17283186
pmcid: 2063985
Hill, A. S. et al. Ion channel clustering at the axon initial segment and node of Ranvier evolved sequentially in early chordates. PLoS Genet. 4, e1000317 (2008).
pubmed: 19112491
pmcid: 2597720
Yang, Y., Lacas-Gervais, S., Morest, D. K., Solimena, M. & Rasband, M. N. BetaIV spectrins are essential for membrane stability and the molecular organization of nodes of Ranvier. J. Neurosci. 24, 7230–7240 (2004).
pubmed: 15317849
pmcid: 6729762
Dzhashiashvili, Y. et al. Nodes of Ranvier and axon initial segments are ankyrin G-dependent domains that assemble by distinct mechanisms. J. Cell Biol. 177, 857–870 (2007).
pubmed: 17548513
pmcid: 2064285
Ho, T. S.-Y. et al. A hierarchy of ankyrin-spectrin complexes clusters sodium channels at nodes of Ranvier. Nat. Neurosci. 17, 1664–1672 (2014).
pubmed: 25362473
pmcid: 4271271
Ratcliffe, C. F. et al. A sodium channel signaling complex: modulation by associated receptor protein tyrosine phosphatase beta. Nat. Neurosci. 3, 437–444 (2000).
pubmed: 10769382
Xiao, Z. C. et al. Tenascin-R is a functional modulator of sodium channel beta subunits. J. Biol. Chem. 274, 26511–26517 (1999).
pubmed: 10473612
Kazarinova-Noyes, K. et al. Contactin associates with Na
pubmed: 11567041
pmcid: 6762905
Waxman, S. G. & Foster, R. E. Development of the axon membrane during differentiation of myelinated fibres in spinal nerve roots. Proc. R. Soc. Lond. B Biol. Sci. 209, 441–446 (1980).
pubmed: 6161376
Waxman, S. G., Black, J. A. & Foster, R. E. Freeze-fracture heterogeneity of the axolemma of premyelinated fibers in the CNS. Neurology 32, 418–421 (1982).
pubmed: 7199667
Bonetto, G. et al. Selective axonal expression of the Kv1 channel complex in pre-myelinated GABAergic hippocampal neurons. Front. Cell. Neurosci. 13, 222 (2019).
pubmed: 31164806
pmcid: 6535494
Çolakoğlu, G., Bergstrom-Tyrberg, U., Berglund, E. O. & Ranscht, B. Contactin-1 regulates myelination and nodal/paranodal domain organization in the central nervous system. Proc. Natl Acad. Sci. USA 111, E394–E403 (2014).
pubmed: 24385581
Brümmendorf, T. et al. The axonal recognition molecule F11 is a multifunctional protein: specific domains mediate interactions with Ng-CAM and restrictin. Neuron 10, 711–727 (1993).
pubmed: 7682821
Peles, E. et al. The carbonic anhydrase domain of receptor tyrosine phosphatase beta is a functional ligand for the axonal cell recognition molecule contactin. Cell 82, 251–260 (1995).
pubmed: 7628014
Rathjen, F. G., Wolff, J. M. & Chiquet-Ehrismann, R. Restrictin: a chick neural extracellular matrix protein involved in cell attachment co-purifies with the cell recognition molecule F11. Development 113, 151–164 (1991).
pubmed: 1764992
Zacharias, U., Nörenberg, U. & Rathjen, F. G. Functional interactions of the immunoglobulin superfamily member F11 are differentially regulated by the extracellular matrix proteins tenascin-R and tenascin-C. J. Biol. Chem. 274, 24357–24365 (1999).
pubmed: 10446214
Black, J. A., Foster, R. E. & Waxman, S. G. Rat optic nerve: freeze-fracture studies during development of myelinated axons. Brain Res. 250, 1–20 (1982).
pubmed: 7139310
Jinno, S. et al. Neuronal diversity in GABAergic long-range projections from the hippocampus. J. Neurosci. 27, 8790–8804 (2007).
pubmed: 17699661
pmcid: 2270609
Bonifazi, P. et al. GABAergic hub neurons orchestrate synchrony in developing hippocampal networks. Science 326, 1419–1424 (2009).
pubmed: 19965761
Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952).
pubmed: 12991237
pmcid: 1392413
Huxley, A. F. & Stämpfli, R. Evidence for saltatory conduction in peripheral myelinated nerve fibres. J. Physiol. 108, 315–339 (1949).
pubmed: 16991863
pmcid: 1392492
Tasaki, I. New measurements of the capacity and the resistance of the myelin sheath and the nodal membrane of the isolated frog nerve fiber. Am. J. Physiol. 181, 639–650 (1955).
pubmed: 13238615
Cohen, C. C. H. et al. Saltatory conduction along myelinated axons involves a periaxonal nanocircuit. Cell 180, 311–322.e15 (2020).
pubmed: 31883793
pmcid: 6978798
Rushton, W. A. H. A theory of the effects of fibre size in medullated nerve. J. Physiol. 115, 101–122 (1951).
pubmed: 14889433
pmcid: 1392008
Waxman, S. G. & Bennett, M. V. Relative conduction velocities of small myelinated and non-myelinated fibres in the central nervous system. Nat. New Biol. 238, 217–219 (1972).
pubmed: 4506206
Debanne, D., Campanac, E., Bialowas, A., Carlier, E. & Alcaraz, G. Axon physiology. Physiol. Rev. 91, 555–602 (2011).
pubmed: 21527732
Freeman, S. A., Desmazières, A., Fricker, D., Lubetzki, C. & Sol-Foulon, N. Mechanisms of sodium channel clustering and its influence on axonal impulse conduction. Cell. Mol. Life Sci. 73, 723–735 (2016).
pubmed: 26514731
Snaidero, N. & Simons, M. The logistics of myelin biogenesis in the central nervous system. Glia 65, 1021–1031 (2017).
pubmed: 28168748
Monje, M. Myelin plasticity and nervous system function. Annu. Rev. Neurosci. 41, 61–76 (2018).
pubmed: 29986163
Seidl, A. H., Rubel, E. W. & Harris, D. M. Mechanisms for adjusting interaural time differences to achieve binaural coincidence detection. J. Neurosci. 30, 70–80 (2010).
pubmed: 20053889
pmcid: 2822993
Waxman, S. G., Black, J. A., Kocsis, J. D. & Ritchie, J. M. Low density of sodium channels supports action potential conduction in axons of neonatal rat optic nerve. Proc. Natl Acad. Sci. USA 86, 1406–1410 (1989).
pubmed: 2537496
Johnston, W. L., Dyer, J. R., Castellucci, V. F. & Dunn, R. J. Clustered voltage-gated Na
pubmed: 8774441
pmcid: 6578691
Zeng, S. & Jung, P. Simulation analysis of intermodal sodium channel function. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78, 061916 (2008).
pubmed: 19256877
Neishabouri, A. & Faisal, A. A. Saltatory conduction in unmyelinated axons: clustering of Na
pubmed: 25352785
pmcid: 4195365
Rama, S., Zbili, M. & Debanne, D. Signal propagation along the axon. Curr. Opin. Neurobiol. 51, 37–44 (2018).
pubmed: 29525575
Chiu, S. Y. & Ritchie, J. M. On the physiological role of internodal potassium channels and the security of conduction in myelinated nerve fibres. Proc. R. Soc. Lond. B Biol. Sci. 220, 415–422 (1984).
pubmed: 6142457
Vabnick, I. et al. Dynamic potassium channel distributions during axonal development prevent aberrant firing patterns. J. Neurosci. 19, 747–758 (1999).
pubmed: 9880595
pmcid: 6782197
Brohawn, S. G., Su, Z. & MacKinnon, R. Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K
pubmed: 24550493
Renigunta, V., Schlichthörl, G. & Daut, J. Much more than a leak: structure and function of K
Holland, L., de Regt, H. W. & Drukarch, B. Thinking about the nerve impulse: the prospects for the development of a comprehensive account of nerve impulse propagation. Front. Cell. Neurosci. 13, 208–208 (2019).
pubmed: 31156394
pmcid: 6529593
Gründemann, J. & Clark, B. A. Calcium-activated potassium channels at nodes of Ranvier secure axonal spike propagation. Cell Rep. 12, 1715–1722 (2015).
pubmed: 26344775
pmcid: 4590545
Tomassy, G. S. et al. Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex. Science 344, 319–324 (2014).
pubmed: 24744380
pmcid: 24744380
Stedehouder, J. et al. Fast-spiking parvalbumin interneurons are frequently myelinated in the cerebral cortex of mice and humans. Cereb. Cortex 27, 5001–5013 (2017).
pubmed: 28922832
Lee, Y. et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487, 443–448 (2012).
pubmed: 22801498
pmcid: 3408792
Saab, A. S. et al. Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron 91, 119–132 (2016).
pubmed: 27292539
pmcid: 27292539
Fünfschilling, U. et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485, 517–521 (2012).
pubmed: 22622581
pmcid: 3613737
Craner, M. J., Lo, A. C., Black, J. A. & Waxman, S. G. Abnormal sodium channel distribution in optic nerve axons in a model of inflammatory demyelination. Brain 126, 1552–1561 (2003).
pubmed: 12805113
Craner, M. J., Hains, B. C., Lo, A. C., Black, J. A. & Waxman, S. G. Co-localization of sodium channel Nav1.6 and the sodium-calcium exchanger at sites of axonal injury in the spinal cord in EAE. Brain 127, 294–303 (2004).
pubmed: 14662515
Dupree, J. L. et al. Oligodendrocytes assist in the maintenance of sodium channel clusters independent of the myelin sheath. Neuron Glia Biol. 1, 179–192 (2004).
pubmed: 18634596
pmcid: 1397705
Pfeiffer, F., Frommer-Kaestle, G. & Fallier-Becker, P. Structural adaption of axons during de- and remyelination in the Cuprizone mouse model. Brain Pathol. 29, 675–692 (2019).
pubmed: 31106489
Mathis, C., Denisenko-Nehrbass, N., Girault, J. A. & Borrelli, E. Essential role of oligodendrocytes in the formation and maintenance of central nervous system nodal regions. Development 128, 4881–4890 (2001).
pubmed: 11731467
Rasband, M. N., Kagawa, T., Park, E. W., Ikenaka, K. & Trimmer, J. S. Dysregulation of axonal sodium channel isoforms after adult-onset chronic demyelination. J. Neurosci. Res. 73, 465–470 (2003).
pubmed: 12898531
Black, J. A. et al. Sensory neuron-specific sodium channel SNS is abnormally expressed in the brains of mice with experimental allergic encephalomyelitis and humans with multiple sclerosis. Proc. Natl Acad. Sci. USA 97, 11598–11602 (2000).
pubmed: 11027357
Roostaei, T. et al. Channelopathy-related SCN10A gene variants predict cerebellar dysfunction in multiple sclerosis. Neurology 86, 410–417 (2016).
pubmed: 26740675
pmcid: 4773947
Jukkola, P. I., Lovett-Racke, A. E., Zamvil, S. S. & Gu, C. K
pubmed: 22560931
pmcid: 3367054
Howell, O. W. et al. Activated microglia mediate axoglial disruption that contributes to axonal injury in multiple sclerosis. J. Neuropathol. Exp. Neurol. 69, 1017–1033 (2010).
pubmed: 20838243
pmcid: 4335193
Bagchi, B. et al. Disruption of myelin leads to ectopic expression of K
pubmed: 24498366
pmcid: 3912067
Hamada, M. S. & Kole, M. H. P. Myelin loss and axonal ion channel adaptations associated with gray matter neuronal hyperexcitability. J. Neurosci. 35, 7272–7286 (2015).
pubmed: 25948275
pmcid: 4420788
Craner, M. J. et al. Molecular changes in neurons in multiple sclerosis: altered axonal expression of Nav1.2 and Nav1.6 sodium channels and Na
pubmed: 15148385
Coman, I. et al. Nodal, paranodal and juxtaparanodal axonal proteins during demyelination and remyelination in multiple sclerosis. Brain 129, 3186–3195 (2006).
pubmed: 16766541
Han, C., Huang, J. & Waxman, S. G. Sodium channel Nav1.8: emerging links to human disease. Neurology 86, 473–483 (2016).
pubmed: 26747884
Zoupi, L., Markoullis, K., Kleopa, K. A. & Karagogeos, D. Alterations of juxtaparanodal domains in two rodent models of CNS demyelination. Glia 61, 1236–1249 (2013).
pubmed: 23828637
Fu, Y. et al. Paranodal myelin retraction in relapsing experimental autoimmune encephalomyelitis visualized by coherent anti-Stokes Raman scattering microscopy. J. Biomed. Opt. 16, 106006 (2011).
pubmed: 22029353
pmcid: 3206924
Stojic, A., Bojcevski, J., Williams, S. K., Diem, R. & Fairless, R. Early nodal and paranodal disruption in autoimmune optic neuritis. J. Neuropathol. Exp. Neurol. 77, 361–373 (2018).
pubmed: 29444299
Crawford, D. K., Mangiardi, M., Xia, X., López-Valdés, H. E. & Tiwari-Woodruff, S. K. Functional recovery of callosal axons following demyelination: a critical window. Neuroscience 164, 1407–1421 (2009).
pubmed: 19800949
Wolswijk, G. & Balesar, R. Changes in the expression and localization of the paranodal protein Caspr on axons in chronic multiple sclerosis. Brain 126, 1638–1649 (2003).
pubmed: 12805111
McDonald, W. I. & Sears, T. A. Focal experimental demyelination in the central nervous system. Brain 93, 575–582 (1970).
pubmed: 5507016
Bostock, H. & Sears, T. A. The internodal axon membrane: electrical excitability and continuous conduction in segmental demyelination. J. Physiol. 280, 273–301 (1978).
pubmed: 690876
pmcid: 1282659
Felts, P. A., Baker, T. A. & Smith, K. J. Conduction in segmentally demyelinated mammalian central axons. J. Neurosci. 17, 7267–7277 (1997).
pubmed: 9295373
pmcid: 6573430
Shrager, P. Axonal coding of action potentials in demyelinated nerve fibers. Brain Res. 619, 278–290 (1993).
pubmed: 8397054
Hamada, M. S., Popovic, M. A. & Kole, M. H. P. Loss of saltation and presynaptic action potential failure in demyelinated axons. Front. Cell. Neurosci. 11, 45 (2017).
pubmed: 28289377
pmcid: 5326753
Alrashdi, B. et al. Nav1.6 promotes inflammation and neuronal degeneration in a mouse model of multiple sclerosis. J. Neuroinflammation 16, 215 (2019).
pubmed: 31722722
pmcid: 6852902
Schattling, B. et al. Activity of NaV1.2 promotes neurodegeneration in an animal model of multiple sclerosis. JCI Insight 1, e89810 (2016).
pubmed: 27882351
pmcid: 5111507
Kapoor, R. et al. Lamotrigine for neuroprotection in secondary progressive multiple sclerosis: a randomised, double-blind, placebo-controlled, parallel-group trial. Lancet Neurol. 9, 681–688 (2010).
pubmed: 20621711
Raftopoulos, R. et al. Phenytoin for neuroprotection in patients with acute optic neuritis: a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 15, 259–269 (2016).
pubmed: 26822749
Brugarolas, P. et al. Development of a PET radioligand for potassium channels to image CNS demyelination. Sci. Rep. 8, 607 (2018).
pubmed: 29330383
pmcid: 5766510
Nikic, I. et al. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat. Med. 17, 495–499 (2011).
pubmed: 21441916
Witte, M. E. et al. Calcium influx through plasma-membrane nanoruptures drives axon degeneration in a model of multiple sclerosis. Neuron 101, 615–624.e5 (2019).
pubmed: 30686733
pmcid: 6389591
Mathey, E. K. et al. Neurofascin as a novel target for autoantibody-mediated axonal injury. J. Exp. Med. 204, 2363–2372 (2007).
pubmed: 17846150
pmcid: 2118456
Stich, O. et al. Prevalence of neurofascin-155 antibodies in patients with multiple sclerosis. J. Neurol. Sci. 364, 29–32 (2016).
pubmed: 27084211
Devaux, J. J., Odaka, M. & Yuki, N. Nodal proteins are target antigens in Guillain–Barré syndrome. J. Peripher. Nerv. Syst. 17, 62–71 (2012).
pubmed: 22462667
Elliott, C. et al. Functional identification of pathogenic autoantibody responses in patients with multiple sclerosis. Brain 135, 1819–1833 (2012).
pubmed: 22561643
pmcid: 3359756
Kawamura, N. et al. Anti-neurofascin antibody in patients with combined central and peripheral demyelination. Neurology 81, 714–722 (2013).
pubmed: 23884033
Derfuss, T. et al. Contactin-2/TAG-1-directed autoimmunity is identified in multiple sclerosis patients and mediates gray matter pathology in animals. Proc. Natl Acad. Sci. USA 106, 8302–8307 (2009).
pubmed: 19416878
Cortese, A. et al. Antibodies to neurofascin, contactin-1, and contactin-associated protein 1 in CIDP: clinical relevance of IgG isotype. Neurol. Neuroimmunol. Neuroinflamm. 7, e639 (2019).
pubmed: 31753915
pmcid: 6935837
Delmont, E. et al. Autoantibodies to nodal isoforms of neurofascin in chronic inflammatory demyelinating polyneuropathy. Brain 140, 1851–1858 (2017).
pubmed: 28575198
Vallat, J.-M. et al. Subacute nodopathy with conduction blocks and anti-neurofascin 140/186 antibodies: an ultrastructural study. Brain 141, e56 (2018).
pubmed: 29800077
Querol, L. et al. Antibodies to contactin-1 in chronic inflammatory demyelinating polyneuropathy. Ann. Neurol. 73, 370–380 (2013).
pubmed: 23280477
Cortese, A. et al. Antibodies to neurofascin, contactin-1, and contactin-associated protein 1 in CIDP: clinical relevance of IgG isotype. Neurol. Neuroimmunol. Neuroinflamm. 7, e639 (2020).
pubmed: 31753915
Mathey, E. K. et al. Autoantibody responses to nodal and paranodal antigens in chronic inflammatory neuropathies. J. Neuroimmunol. 309, 41–46 (2017).
pubmed: 28601286
Devaux, J. J. et al. Neurofascin-155 IgG4 in chronic inflammatory demyelinating polyneuropathy. Neurology 86, 800–807 (2016).
pubmed: 26843559
pmcid: 4793783
Kouton, L. et al. Electrophysiological features of chronic inflammatory demyelinating polyradiculoneuropathy associated with IgG4 antibodies targeting neurofascin 155 or contactin 1 glycoproteins. Clin. Neurophysiol. 131, 921–927 (2020).
pubmed: 32078921
Ogata, H. et al. Characterization of IgG4 anti-neurofascin 155 antibody-positive polyneuropathy. Ann. Clin. Transl. Neurol. 2, 960–971 (2015).
pubmed: 26478896
pmcid: 4603379
Cortese, A. et al. Neurofascin-155 as a putative antigen in combined central and peripheral demyelination. Neurol. Neuroimmunol. Neuroinflamm. 3, e238 (2016).
pubmed: 27308303
pmcid: 4897982
Sasaki, M. et al. Molecular reconstruction of nodes of Ranvier after remyelination by transplanted olfactory ensheathing cells in the demyelinated spinal cord. J. Neurosci. 26, 1803–1812 (2006).
pubmed: 16467529
pmcid: 2605396
Smith, K. J., Bostock, H. & Hall, S. M. Saltatory conduction precedes remyelination in axons demyelinated with lysophosphatidyl choline. J. Neurol. Sci. 54, 13–31 (1982).
pubmed: 6804606
Auer, F., Vagionitis, S. & Czopka, T. Evidence for myelin sheath remodeling in the CNS revealed by in vivo imaging. Curr. Biol. 28, 549–559.e3 (2018).
pubmed: 29429620
Reimer, M. M. et al. Rapid disruption of axon-glial integrity in response to mild cerebral hypoperfusion. J. Neurosci. 31, 18185–18194 (2011).
pubmed: 22159130
pmcid: 4337974
Ritter, J. et al. Neonatal hyperoxia exposure disrupts axon-oligodendrocyte integrity in the subcortical white matter. J. Neurosci. 33, 8990–9002 (2013).
pubmed: 23699510
pmcid: 3742015
Marin, M. A. et al. Reassembly of excitable domains after CNS axon regeneration. J. Neurosci. 36, 9148–9160 (2016).
pubmed: 27581456
pmcid: 5005724
Marion, C. M., Radomski, K. L., Cramer, N. P., Galdzicki, Z. & Armstrong, R. C. Experimental traumatic brain injury identifies distinct early and late phase axonal conduction deficits of white matter pathophysiology, and reveals intervening recovery. J. Neurosci. 38, 8723–8736 (2018).
pubmed: 30143572
pmcid: 6181309
Eijkelkamp, N. et al. Neurological perspectives on voltage-gated sodium channels. Brain 135, 2585–2612 (2012).
pubmed: 22961543
pmcid: 3437034
Cooper, E. C. In Jasper’s Basic Mechanisms of the Epilepsies (eds Noebels, J. L. et al.) Chapter 5 (National Center for Biotechnology Information, 2012).
Bauer, C. K. et al. Mutations in KCNK4 that affect gating cause a recognizable neurodevelopmental syndrome. Am. J. Hum. Genet. 103, 621–630 (2018).
pubmed: 30290154
pmcid: 6174320
Desmazières, A., Sol-Foulon, N. & Lubetzki, C. Changes at the nodal and perinodal axonal domains: a basis for multiple sclerosis pathology? Mult. Schler. J. https://doi.org/10.1177/1352458511434370 (2012).
doi: 10.1177/1352458511434370