Using working memory performance to predict mathematics performance 2 years on.
Journal
Psychological research
ISSN: 1430-2772
Titre abrégé: Psychol Res
Pays: Germany
ID NLM: 0435062
Informations de publication
Date de publication:
Jul 2021
Jul 2021
Historique:
received:
31
01
2020
accepted:
01
07
2020
pubmed:
12
7
2020
medline:
31
7
2021
entrez:
12
7
2020
Statut:
ppublish
Résumé
A number of previous studies have used working memory components to predict mathematical performance in a variety of ways; however, there is no consideration of the contributions of the subcomponents of visuospatial working memory to this prediction. In this paper we conducted a 2-year follow-up to the data presented in Allen et al. (Q J Exp Psychol 73(2):239-248, 2020b) to ascertain how these subcomponents of visuospatial working memory related to later mathematical performance. 159 children (M age = 115.48 months) completed the maths test for this second wave of the study. Results show a shift from spatial-simultaneous influence to spatial-sequential influence, whilst verbal involvement remained relatively stable. Results are discussed in terms of their potential for education and future research.
Identifiants
pubmed: 32651687
doi: 10.1007/s00426-020-01382-5
pii: 10.1007/s00426-020-01382-5
pmc: PMC8289789
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1986-1996Subventions
Organisme : Economic and Social Research Council (GB)
ID : ES/P000762/1
Informations de copyright
© 2020. The Author(s).
Références
Allen, K., Giofrè, D., Higgins, S., & Adams, J. (2020a). Working memory predictors of mathematics across the middle primary school years. British Journal of Educational Psychology. https://doi.org/10.1111/bjep.12339 .
doi: 10.1111/bjep.12339
Allen, K., Giofrè, D., Higgins, S., & Adams, J. (2020b). Working memory predictors of written mathematics in 7- to 8-year-old children. Quarterly Journal of Experimental Psychology, 73(2), 239–248. https://doi.org/10.1177/1747021819871243 .
doi: 10.1177/1747021819871243
Allen, K., Higgins, S., & Adams, J. (2019). The Relationship between visuospatial working memory and mathematical performance in school-aged children: A systematic review. Educational Psychology Review. https://doi.org/10.1007/s10648-019-09470-8 .
doi: 10.1007/s10648-019-09470-8
Alloway, T. P. (2006). How does working memory work in the classroom ? Educational Research, 1(July), 134–139. Retrieved from: http://dspace.stir.ac.uk/dspace/handle/1893/786 . Accessed 7 May 2020.
Alloway, T. P., & Passolunghi, M. C. (2011). The relationship between working memory, IQ, and mathematical skills in children. Learning and Individual Differences, 21(1), 133–137. https://doi.org/10.1016/j.lindif.2010.09.013 .
doi: 10.1016/j.lindif.2010.09.013
Andersson, U., & Lyxell, B. (2007). Working memory deficit in children with mathematical difficulties: A general or specific deficit? Journal of Experimental Child Psychology, 96(3), 197–228. https://doi.org/10.1016/j.jecp.2006.10.001 .
doi: 10.1016/j.jecp.2006.10.001
pubmed: 17118398
Ashcraft, M. H., & Moore, A. M. (2009). Mathematics anxiety and the affective drop in performance. Journal of Psychoeducational Assessment, 27(3), 197–205. https://doi.org/10.1177/0734282908330580 .
doi: 10.1177/0734282908330580
Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. A. Bower (Ed.), The psychology of learning and motivation (pp. 47–89). Oxford: Academic Press.
Blalock, L. D., & Clegg, B. A. (2010). Encoding and representation of simultaneous and sequential arrays in visuospatial working memory. Quarterly Journal of Experimental Psychology, 63(5), 856–862.
doi: 10.1080/17470211003690680
Bull, Rebecca, Espy, K. A., & Wiebe, S. A. (2008). Short-term memory, working memory, and executive functioning in preschoolers: Longitudinal predictors of mathematical achievement at age 7 years. Developmental Neuropsychology, 33(3), 205–228. https://doi.org/10.1080/87565640801982312 .
doi: 10.1080/87565640801982312
pubmed: 18473197
pmcid: 2729141
Bull, R., Johnston, R. S., & Roy, J. A. (1999). Exploring the roles of the visual-spatial sketch pad and central executive in children’s arithmetical skills: Views from cognition and developmental neuropsychology. Developmental Neuropsychology, 15, 421–442.
doi: 10.1080/87565649909540759
Carey, E., Hill, F., Devine, A., & Szücs, D. (2016). The chicken or the egg? The direction of the relationship between mathematics anxiety and mathematics performance. Frontiers in Psychology, 6, 1987.
doi: 10.3389/fpsyg.2015.01987
Carretti, B., Cornoldi, C., De Beni, R., & Palladino, P. (2004). What happens to information to be suppressed in working-memory tasks? Short and long term effects. The Quarterly Journal of Experimental Psychology, 57(6), 1059–1084. https://doi.org/10.1080/02724980343000684 .
doi: 10.1080/02724980343000684
pubmed: 15370516
Caviola, S., Colling, L. J., Mammarella, I. C., & Szűcs, D. (2020). Predictors of mathematics in primary school: Magnitude comparison, verbal and spatial working memory measures. Developmental Science. https://doi.org/10.1111/desc.12957 .
doi: 10.1111/desc.12957
pubmed: 32112457
Caviola, S., Mammarella, I. C., Cornoldi, C., & Lucangeli, D. (2012). The involvement of working memory in children’s exact and approximate mental addition. Journal of Experimental Child Psychology, 112(2), 141–160. https://doi.org/10.1016/j.jecp.2012.02.005 .
doi: 10.1016/j.jecp.2012.02.005
pubmed: 22436893
Caviola, S., Mammarella, I. C., Lucangeli, D., & Cornoldi, C. (2014). Working memory and domain-specific precursors predicting success in learning written subtraction problems. Learning and Individual Differences, 36, 92–100. https://doi.org/10.1016/j.lindif.2014.10.010 .
doi: 10.1016/j.lindif.2014.10.010
Clearman, J., Klinger, V., & Szűcs, D. (2017). Visuospatial and verbal memory in mental arithmetic. Quarterly Journal of Experimental Psychology, 70(9), 1837–1855. https://doi.org/10.1080/17470218.2016.1209534 .
doi: 10.1080/17470218.2016.1209534
Corsi, P. M. (1972). Human memory and the medial temporal region of the brain [McGill University]. Retrieved from: http://digitool.library.mcgill.ca/R/?func=dbin-jump-full&object_id=93903&local_base=GEN01-MCG02 . Accessed 12 Oct 2018.
D’Amico, A., & Guarnera, M. (2005). Exploring working memory in children with low arithmetical achievement. Learning and Individual Differences, 15(3), 189–202. https://doi.org/10.1016/j.lindif.2005.01.002 .
doi: 10.1016/j.lindif.2005.01.002
David, C. V. (2012). Working memory deficits in math learning difficulties: A meta-analysis. International Journal of Developmental Disabilities, 58(2), 67–84.
doi: 10.1179/2047387711Y.0000000007
De Smedt, B., Janssen, R., Bouwens, K., Verschaffel, L., Boets, B., & Ghesquière, P. (2009). Working memory and individual differences in mathematics achievement: a longitudinal study from first grade to second grade. Journal of Experimental Child Psychology, 103(2), 186–201. https://doi.org/10.1016/j.jecp.2009.01.004 .
doi: 10.1016/j.jecp.2009.01.004
pubmed: 19281998
Department for Education. (2013). Mathematics programmes of study: key stages 1 and 2. Department for Education, September, 1–5. https://doi.org/10.1017/CBO9781107415324.004 .
Fanari, R., Meloni, C., & Massidda, D. (2019). Visual and spatial working memory abilities predict early math skills: A longitudinal study. Frontiers in Psychology, 10, 2460. https://doi.org/10.3389/fpsyg.2019.02460 .
doi: 10.3389/fpsyg.2019.02460
pubmed: 31780987
pmcid: 6852704
Friso-van den Bos, I., van der Ven, S. H. G., Kroesbergen, E. H., & van Luit, J. E. H. (2013). Working memory and mathematics in primary school children: A meta-analysis. Educational Research Review, 10, 29–44. https://doi.org/10.1016/j.edurev.2013.05.003 .
doi: 10.1016/j.edurev.2013.05.003
Gathercole, S. E., & Alloway, T. P. (2004). Working memory and classroom learning. Dyslexia Review, 17, 1–41. Retrieved from: http://www.york.ac.uk/res/wml/PATOSS.pdf . Accessed 7 May 2020.
Gathercole, S. E., Brown, L., & Pickering, S. J. (2003). Working memory assessments at school entry as longitudinal predictors of National Curriculum attainment levels. Educational and Child Psychology, 20(3), 109–122. Retrieved from: https://psycnet.apa.org/record/2004-11157-009 . Accessed 14 Jan 2020.
Gathercole, S. E., & Pickering, S. (2001). Working memory test battery for children. London, UK: Psychological Corporation.
Geary, D. C. (2011). Cognitive predictors of achievement growth in mathematics: A 5-year longitudinal study. Developmental Psychology, 47(6), 1539–1552. https://doi.org/10.1037/a0025510 .
doi: 10.1037/a0025510
pubmed: 21942667
pmcid: 3210883
Geary, D. C., Nicholas, A., Li, Y., & Sun, J. (2017). Developmental change in the influence of domain-general abilities and domain-specific knowledge on mathematics achievement: An eight-year longitudinal study. Journal of Educational Psychology, 109(5), 680–693. https://doi.org/10.1037/edu0000159 .
doi: 10.1037/edu0000159
pubmed: 28781382
pmcid: 5542417
Giofrè, D., & Mammarella, I. C. (2014). The relationship between working memory and intelligence in children: Is the scoring procedure important? Intelligence, 46, 300–310. https://doi.org/10.1016/j.intell.2014.08.001 .
doi: 10.1016/j.intell.2014.08.001
Giofrè, D., Mammarella, I. C., & Cornoldi, C. (2014). The relationship among geometry, working memory, and intelligence in children. Journal of Experimental Child Psychology, 123, 112–128. https://doi.org/10.1016/j.jecp.2014.01.002 .
doi: 10.1016/j.jecp.2014.01.002
pubmed: 24709286
Hilbert, S., Bruckmaier, G., Binder, K., Krauss, S., & Bühner, M. (2019). Prediction of elementary mathematics grades by cognitive abilities. European Journal of Psychology of Education, 34(3), 665–683. https://doi.org/10.1007/s10212-018-0394-9 .
doi: 10.1007/s10212-018-0394-9
Holmes, J., & Adams, J. (2006). Working Memory and Children’s Mathematical Skills: Implications for mathematical development and mathematics curricula. Educational Psychology, 26(3), 339–366. https://doi.org/10.1080/01443410500341056 .
doi: 10.1080/01443410500341056
Holmes, J., Adams, J. W., & Hamilton, C. J. (2008). The relationship between visuospatial sketchpad capacity and children’s mathematical skills. European Journal of Cognitive Psychology, 20(2), 272–289. https://doi.org/10.1080/09541440701612702 .
doi: 10.1080/09541440701612702
Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55. https://doi.org/10.1080/10705519909540118 .
doi: 10.1080/10705519909540118
Kabacoff, R. I. (2015). R in action: Data analysis and graphics with R (2nd ed.). Shelter Island, New York: Manning Publications Co.
Krajewski, K., & Schneider, W. (2009). Exploring the impact of phonological awareness, visual–spatial working memory, and preschool quantity–number competencies on mathematics achievement in elementary school: Findings from a 3-year longitudinal study. Journal of Experimental Child Psychology, 103(4), 516–531. https://doi.org/10.1016/j.jecp.2009.03.009 .
doi: 10.1016/j.jecp.2009.03.009
pubmed: 19427646
Krousel-Wood, M., Muntner, P., Jannu, A., Hyre, A., & Breault, J. (2006). Does waiver of written informed consent from the institutional review board affect response rate in a low-risk research study? Journal of Investigative Medicine, 54(4), 174–179.
doi: 10.2310/6650.2006.05031
Kyttälä, M., Kanerva, K., Munter, I., & Björn, P. M. (2019). Working memory resources in children: stability and relation to subsequent academic skills. Educational Psychology, 39(6), 709–728. https://doi.org/10.1080/01443410.2018.1562046 .
doi: 10.1080/01443410.2018.1562046
Lanfranchi, S., Carretti, B., Spanò, G., & Cornoldi, C. (2009). A specific deficit in visuospatial simultaneous working memory in Down syndrome. Journal of Intellectual Disability Research, 53(5), 474–483. https://doi.org/10.1111/j.1365-2788.2009.01165.x .
doi: 10.1111/j.1365-2788.2009.01165.x
pubmed: 19396941
Li, Y., & Geary, D. C. (2017). Children’s visuospatial memory predicts mathematics achievement through early adolescence. PLOS One. https://doi.org/10.1371/journal.pone.0172046 . Accessed on 19 Oct 2017.
doi: 10.1371/journal.pone.0172046
pubmed: 29287115
pmcid: 5747479
Mammarella, I. C., Caviola, S., Giofrè, D., & Szűcs, D. (2018). The underlying structure of visuospatial working memory in children with mathematical learning disability. British Journal of Developmental Psychology, 36(2), 220–235. https://doi.org/10.1111/bjdp.12202 .
doi: 10.1111/bjdp.12202
Mammarella, I. C., Cornoldi, C., Pazzaglia, F., Toso, C., Grimoldi, M., & Vio, C. (2006). Evidence for a double dissociation between spatial-simultaneous and spatial-sequential working memory in visuospatial (nonverbal) learning disabled children. Brain and Cognition, 62(1), 58–67. https://doi.org/10.1016/j.bandc.2006.03.007 .
doi: 10.1016/j.bandc.2006.03.007
pubmed: 16750287
Mammarella, I. C., Giofrè, D., & Caviola, S. (2017). Learning geometry: The development of geometrical concepts and the role of cognitive processes. Acquisition of complex arithmetic skills and higher-order mathematics concepts (pp. 221–246). Oxford: Elsevier.
doi: 10.1016/B978-0-12-805086-6.00010-2
Mammarella, I. C., Pazzaglia, F., & Cornoldi, C. (2008). Evidence for different components in children’s visuospatial working memory. British Journal of Developmental Psychology, 26(3), 337–355. https://doi.org/10.1348/026151007X236061 .
doi: 10.1348/026151007X236061
McLean, J. F., & Hitch, G. J. (1999). Working memory impairments in children with specific arithmetic learning difficulties. Journal of Experimental Child Psychology, 74(3), 240–260. https://doi.org/10.1006/jecp.1999.2516 .
doi: 10.1006/jecp.1999.2516
pubmed: 10527556
Onwuegbuzie, A. J., & Seaman, M. A. (1995). The effect of time constraints and statistics test anxiety on test performance in a statistics course. The Journal of Experimental Education, 63(2), 115–124. https://doi.org/10.1080/00220973.1995.9943816 .
doi: 10.1080/00220973.1995.9943816
Peng, P., & Fuchs, D. (2016). A meta-analysis of working memory deficits in children with learning difficulties: Is there a difference between verbal domain and numerical domain? Journal of Learning Disabilities, 49(1), 3–20. https://doi.org/10.1177/0022219414521667 .
doi: 10.1177/0022219414521667
pubmed: 24548914
Peng, P., Namkung, J., Barnes, M., & Sun, C. (2016). A meta-analysis of mathematics and working memory: Moderating effects of working memory domain, type of mathematics skill, and sample characteristics. Journal of Educational Psychology, 108(4), 455–473. https://doi.org/10.1037/edu0000079 .
doi: 10.1037/edu0000079
R Core Team. (2018). R: A language and environment for statistical computing (3.1.2). R Foundation for Statistical Computing. Retrieved from: http://www.r-project.org/ . Accessed on 10 Oct 2018.
Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learning and Individual Differences, 20(2), 110–122. https://doi.org/10.1016/j.lindif.2009.10.005 .
doi: 10.1016/j.lindif.2009.10.005
Rosseel, Y. (2010). Mplus estimators: MLM and MLR. First Mplus User Meeting–October 27th.
Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1–36. Retrieved from: http://www.jstatsoft.org/v48/i02/ . Accessed 9 Sept 2019.
Rudkin, S. J., Pearson, D. G., & Logie, R. H. (2007). Executive processes in visual and spatial working memory tasks. Quarterly Journal of Experimental Psychology (2006), 60(1), 79–100. https://doi.org/10.1080/17470210600587976 .
doi: 10.1080/17470210600587976
Schneider, W. (2008). The development of metacognitive knowledge in children and adolescents: Major trends and implications for education. Mind, Brain, and Education, 2(3), 114–121. https://doi.org/10.1111/j.1751-228X.2008.00041.x .
doi: 10.1111/j.1751-228X.2008.00041.x
Swanson, H. L., & Jerman, O. (2006). Math disabilities: A selective meta-analysis of the literature. Review of Educational Research, 76(2), 249–274. https://doi.org/10.3102/00346543076002249 .
doi: 10.3102/00346543076002249
Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning and Instruction, 4(4), 295–312. https://doi.org/10.1016/0959-4752(94)90003-5 .
doi: 10.1016/0959-4752(94)90003-5
Van de Weijer-Bergsma, E., Kroesbergen, E. H., & Van Luit, J. E. H. (2015). Verbal and visual-spatial working memory and mathematical ability in different domains throughout primary school. Memory and Cognition, 43(3), 367–378. https://doi.org/10.3758/s13421-014-0480-4 .
doi: 10.3758/s13421-014-0480-4
pubmed: 25377509
van der Ven, S. H. G., van der Maas, H. L. J., Straatemeier, M., & Jansen, B. R. J. (2013). Visuospatial working memory and mathematical ability at different ages throughout primary school. Learning and Individual Differences, 27(Supplement C), 182–192. https://doi.org/10.1016/j.lindif.2013.09.003 .
doi: 10.1016/j.lindif.2013.09.003
Wansard, M., Bartolomeo, P., Bastin, C., Segovia, F., Gillet, S., Duret, C., & Meulemans, T. (2015). Support for distinct subcomponents of spatial working memory: A double dissociation between spatial–simultaneous and spatial–sequential performance in unilateral neglect. Cognitive Neuropsychology, 32(1), 14–28. https://doi.org/10.1080/02643294.2014.995075 .
doi: 10.1080/02643294.2014.995075
pubmed: 25584734
Wilson, K. M. M., & Swanson, H. L. L. (2001). Are mathematics disabilities due to a domain-general or a domain-specific working memory deficit? Journal of Learning Disabilities, 34(3), 237–248. https://doi.org/10.1177/002221940103400304 .
doi: 10.1177/002221940103400304
pubmed: 15499878