Evidence for an involvement of the ubiquitin-like modifier ISG15 in MHC class I antigen presentation.


Journal

European journal of immunology
ISSN: 1521-4141
Titre abrégé: Eur J Immunol
Pays: Germany
ID NLM: 1273201

Informations de publication

Date de publication:
01 2021
Historique:
received: 20 03 2020
revised: 16 06 2020
accepted: 14 07 2020
pubmed: 21 7 2020
medline: 23 4 2021
entrez: 21 7 2020
Statut: ppublish

Résumé

The IFN stimulated gene 15 (ISG15) encodes a 15-kDa ubiquitin-like protein, that is induced by type I IFNs and is conjugated to the bulk of newly synthesized polypeptides at the ribosome. ISG15 functions as an antiviral molecule possibly by being covalently conjugated to viral proteins and disturbing virus particle assembly. Here, we have investigated the effect of ISGylation on degradation and antigen presentation of viral and cellular proteins. ISGylation did not induce proteasomal degradation of bulk ISG15 target proteins neither after overexpressing ISG15 nor after induction by IFN-β. The MHC class I cell surface expression of splenocytes derived from ISG15-deficient mice or mice lacking the catalytic activity of the major de-ISGylating enzyme USP18 was unaltered as compared to WT mice. Fusion of ubiquitin or FAT10 to the long-lived nucleoprotein (NP) of lymphocytic choriomeningitis virus accelerated the proteasomal degradation of NP while fusion to ISG15 did not detectably speed up NP degradation. Nevertheless, MHC-I restricted presentation of two epitopes of NP were markedly enhanced when it was fused to ISG15 similarly to fusion with ubiquitin or FAT10. Thus, we provide evidence that ISG15 can enhance the presentation of antigens on MHC-I most likely by promoting co-translational antigen processing.

Identifiants

pubmed: 32686110
doi: 10.1002/eji.202048646
doi:

Substances chimiques

Cytokines 0
FAT10 protein, mouse 0
G1p2 protein, mouse 0
Histocompatibility Antigens Class I 0
Nucleocapsid Proteins 0
Recombinant Fusion Proteins 0
Ubiquitins 0
ISG15 protein, human 60267-61-0
Usp18 protein, mouse EC 3.4.19.-
Ubiquitin Thiolesterase EC 3.4.19.12
Proteasome Endopeptidase Complex EC 3.4.25.1

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

138-150

Informations de copyright

© 2020 Wiley-VCH GmbH.

Références

Schneider, W. M., Chevillotte, M. D. and Rice, C. M., Interferon-stimulated genes: a complex web of host defenses. Annu. Rev. Immunol. 2014. 32: 513-545.
Der, S. D., Zhou, A., Williams, B. R. and Silverman, R. H., Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc. Natl. Acad. Sci. U. S. A. 1998. 95: 15623-15628.
Sampson, D. L., Fox, B. A., Yager, T. D., Bhide, S., Cermelli, S., McHugh, L. C., Seldon, T. A. et al., A four-biomarker blood signature discriminates systemic inflammation due to viral infection versus other etiologies. Sci. Rep. 2017. 7: 2914.
Lenschow, D. J., Giannakopoulos, N. V., Gunn, L. J., Johnston, C., O'Guin, A. K., Schmidt, R. E., Levine, B. and Virgin, H. W. T., Identification of interferon-stimulated gene 15 as an antiviral molecule during Sindbis virus infection in vivo. J. Virol. 2005. 79: 13974-13983.
Hermann, M. and Bogunovic, D., ISG15: in sickness and in health. Trends Immunol. 2017. 38: 79-93.
Morales, D. J. and Lenschow, D. J., The antiviral activities of ISG15. J. Mol. Biol. 2013. 425: 4995-5008.
Werneke, S. W., Schilte, C., Rohatgi, A., Monte, K. J., Michault, A., Arenzana-Seisdedos, F., Vanlandingham, D. L., et al., ISG15 is critical in the control of Chikungunya virus infection independent of UbE1L mediated conjugation. PLoS Pathog. 2011. 7: e1002322.
Morales, D. J., Monte, K., Sun, L., Struckhoff, J. J., Agapov, E., Holtzman, M. J., Stappenbeck, T. S. and Lenschow, D. J., Novel mode of ISG15-mediated protection against influenza A virus and Sendai virus in mice. J. Virol. 2015. 89: 337-349.
Rahnefeld, A., Klingel, K., Schuermann, A., Diny Nicola, L., Althof, N., Lindner, A., Bleienheuft, et al., Ubiquitin-like protein ISG15 (Interferon-Stimulated Gene of 15 kDa) in host defense against heart failure in a mouse model of virus-induced cardiomyopathy. Circulation 2014. 130: 1589-1600.
Zhao, C., Sridharan, H., Chen, R., Baker, D. P., Wang, S. and Krug, R. M., Influenza B virus non-structural protein 1 counteracts ISG15 antiviral activity by sequestering ISGylated viral proteins. Nat. Commun. 2016. 7: 12754.
Haas, A. L., Ahrens, P., Bright, P. M. and Ankel, H., Interferon induces a 15-kilodalton protein exhibiting marked homology to ubiquitin. J. Biol. Chem. 1987. 262: 11315-11323.
Zhang, D. and Zhang, D. E., Interferon-stimulated gene 15 and the protein ISGylation system. J. Interferon Cytokine Res. 2011. 31: 119-130.
Narasimhan, J., Wang, M., Fu, Z., Klein, J. M., Haas, A. L. and Kim, J. J., Crystal structure of the interferon-induced ubiquitin-like protein ISG15. J. Biol. Chem. 2005. 280: 27356-27365.
Zhao, C., Beaudenon, S. L., Kelley, M. L., Waddell, M. B., Yuan, W., Schulman, B. A., Huibregtse, J. M. and Krug, R. M., The UbcH8 ubiquitin E2 enzyme is also the E2 enzyme for ISG15, an IFN-alpha/beta-induced ubiquitin-like protein. Proc. Natl. Acad. Sci. U. S. A. 2004. 101: 7578-7582.
Dastur, A., Beaudenon, S., Kelley, M., Krug, R. M. and Huibregtse, J. M., Herc5, an interferon-induced HECT E3 enzyme, is required for conjugation of ISG15 in human cells. J. Biol. Chem. 2006. 281: 4334-4338.
Wong, J. J., Pung, Y. F., Sze, N. S. and Chin, K. C., HERC5 is an IFN-induced HECT-type E3 protein ligase that mediates type I IFN-induced ISGylation of protein targets. Proc. Natl. Acad. Sci. U. S. A. 2006. 103: 10735-10740.
Durfee, L. A., Lyon, N., Seo, K. and Huibregtse, J. M., The ISG15 conjugation system broadly targets newly synthesized proteins: implications for the antiviral function of ISG15. Mol. Cell 2010. 38: 722-732.
Groettrup, M., Pelzer, C., Schmidtke, G. and Hofmann, K., Activating the ubiquitin family: UBA6 challenges the field. Tr. Biochem. Sci. 2008. 33: 230-237.
Schmidtke, G., Aichem, A. and Groettrup, M., FAT10ylation as a signal for proteasomal degradation. Biochim. Biophys. Acta 2014. 1843: 97-102.
Nakashima, H., Nguyen, T., Goins, W. F. and Chiocca, E. A., Interferon-stimulated gene 15 (ISG15) and ISG15-linked proteins can associate with members of the selective autophagic process, histone deacetylase 6 (HDAC6) and SQSTM1/p62. J. Biol. Chem. 2015. 290: 1485-1495.
Fan, J. B., Arimoto, K., Motamedchaboki, K., Yan, M., Wolf, D. A. and Zhang, D. E., Identification and characterization of a novel ISG15-ubiquitin mixed chain and its role in regulating protein homeostasis. Sci. Rep. 2015. 5: 12704.
Huang, Y. F., Wee, S., Gunaratne, J., Lane, D. P. and Bulavin, D. V., Isg15 controls p53 stability and functions. Cell Cycle 2014. 13: 2200-2210.
Rock, K. L. and Goldberg, A. L., Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu. Rev. Immunol. 1999. 17: 739-779.
Swaim, C. D., Scott, A. F., Canadeo, L. A. and Huibregtse, J. M., Extracellular ISG15 signals cytokine secretion through the LFA-1 integrin receptor. Mol. Cell 2017. 68: 581-590 e585.
D'Cunha, J., Ramanujam, S., Wagner, R. J., Witt, P. L., Knight, E., Jr. and Borden, E. C., In vitro and in vivo secretion of human ISG15, an IFN-induced immunomodulatory cytokine. J. Immunol. 1996. 157: 4100-4108.
Khan, S., de Giuli, R., Schmidtke, G., Bruns, M., Buchmeier, M., van den Broek, M. and Groettrup, M., Cutting edge: neosynthesis is required for the presentation of a T cell epitope from a long-lived viral protein. J. Immunol. 2001. 167: 4801-4804.
Schliehe, C., Bitzer, A., van den Broek, M. and Groettrup, M., Stable antigen is most effective for eliciting CD8+ T-cell responses after DNA vaccination and infection with recombinant vaccinia virus in vivo. J. Virol. 2012. 86: 9782-9793.
Burks, J., Reed, R. E. and Desai, S. D., Free ISG15 triggers an antitumor immune response against breast cancer: a new perspective. Oncotarget 2015. 6: 7221-7231.
Bogunovic, D., Byun, M., Durfee, L. A., Abhyankar, A., Sanal, O., Mansouri, D., Salem, S., et al., Mycobacterial disease and impaired IFN-gamma immunity in humans with inherited ISG15 deficiency. Science 2012. 337: 1684-1688.
Ketscher, L., Hannss, R., Morales, D. J., Basters, A., Guerra, S., Goldmann, T., Hausmann, A., et al., Selective inactivation of USP18 isopeptidase activity in vivo enhances ISG15 conjugation and viral resistance. Proc. Natl. Acad. Sci. U. S. A. 2015. 112: 1577-1582.
Takeuchi, T., Inoue, S. and Yokosawa, H., Identification and Herc5-mediated ISGylation of novel target proteins. Biochem. Biophys. Res. Commun. 2006. 348: 473-477.
Malakhov, M. P., Kim, K. I., Malakhova, O. A., Jacobs, B. S., Borden, E. C. and Zhang, D. E., High-throughput immunoblotting. Ubiquitiin-like protein ISG15 modifies key regulators of signal transduction. J. Biol. Chem. 2003. 278: 16608-16613.
Spinnenhirn, V., Bitzer, A., Aichem, A. and Groettrup, M., Newly translated proteins are substrates for ubiquitin, ISG15, and FAT10. FEBS Lett. 2017. 591: 186-195.
Dolan, B. P., Bennink, J. R. and Yewdell, J. W., Translating DRiPs: progress in understanding viral and cellular sources of MHC class I peptide ligands. Cell Mol. Life Sci. 2011. 68: 1481-1489.
Zhao, C., Denison, C., Huibregtse, J. M., Gygi, S. and Krug, R. M., Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways. Proc. Natl. Acad. Sci. U. S. A. 2005. 102: 10200-10205.
Jeon, Y. J., Choi, J. S., Lee, J. Y., Yu, K. R., Kim, S. M., Ka, S. H., Oh, K. H., Kim, K. I., Zhang, D. E., Bang, O. S. and Chung, C. H., ISG15 modification of filamin B negatively regulates the type I interferon-induced JNK signalling pathway. EMBO Rep. 2009. 10: 374-380.
Liu, M., Li, X. L. and Hassel, B. A., Proteasomes modulate conjugation to the ubiquitin-like protein, ISG15. J. Biol. Chem. 2003. 278: 1594-1602.
Desai, S. D., Haas, A. L., Wood, L. M., Tsai, Y. C., Pestka, S., Rubin, E. H., Saleem, A., et al., Elevated expression of ISG15 in tumor cells interferes with the ubiquitin/26S proteasome pathway. Cancer Res. 2006. 66: 921-928.
Ganesan, M., Poluektova, L. Y., Tuma, D. J., Kharbanda, K. K. and Osna, N. A., Acetaldehyde Disrupts Interferon Alpha Signaling in Hepatitis C Virus-Infected Liver Cells by Up-Regulating USP18. Alcohol. Clin. Exp. Res. 2016. 40: 2329-2338.
Michalek, M. T., Grant, E. P., Gramm, C., Goldberg, A. L. and Rock, K. L., A role for the ubiquitin-dependent proteolytic pathway in MHC class I-restricted antigen presentation. Nature 1993. 363: 552-554.
Ebstein, F., Lehmann, A. and Kloetzel, P. M., The FAT10- and ubiquitin-dependent degradation machineries exhibit common and distinct requirements for MHC class I antigen presentation. Cell Mol. Life Sci. 2012. 69: 2443-2454.
Osiak, A., Utermöhlen, O., Niendorf, S., Horak, I. and Knobeloch, K.-P., ISG15, an Interferon-Stimulated Ubiquitin-Like Protein, Is Not Essential for STAT1 Signaling and Responses against Vesicular Stomatitis and Lymphocytic Choriomeningitis Virus. Mol. Cell. Biol. 2005. 25: 6338-6345.
Yewdell, J. W., Anton, L. C. and Bennink, J. R., Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules? J. Immunol. 1996. 157: 1823-1826.
Schubert, U., Anton, L. C., Gibbs, J., Norbury, C. C., Yewdell, J. W. and Bennink, J. R., Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 2000. 404: 770-774.
English, L., Chemali, M., Duron, J., Rondeau, C., Laplante, A., Gingras, D., Alexander, D., Leib, D., Norbury, C., Lippe, R. and Desjardins, M., Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection. Nat. Immunol. 2009. 10: 480-487.
Seibenhener, M. L., Babu, J. R., Geetha, T., Wong, H. C., Krishna, N. R. and Wooten, M. W., Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol. Cell Biol. 2004. 24: 8055-8068.
Bitzer, A., Basler, M., Krappmann, D. and Groettrup, M., Immunoproteasome subunit deficiency has no influence on the canonical pathway of NF-kappaB activation. Mol. Immunol. 2017. 83: 147-153.
Rodriguez, F., Zhang, J. and Whitton, J. L., DNA immunization: ubiquitination of a viral protein enhances cytotoxic T-lymphocyte induction and antiviral protection but abrogates antibody induction. J. Virol. 1997. 71: 8497-8503.
Shen, L. and Rock, K. L., Cellular protein is the source of cross-priming antigen in vivo. Proc. Natl. Acad. Sci. U. S. A. 2004. 101: 3035-3040.
Cossarizza, A., Chang, H. D., Radbruch, A., Acs, A., Adam, D., Adam-Klages, S., Agace, W. W., et al., Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur. J. Immunol. 2019. 49: 1457-1973.

Auteurs

Tobias Held (T)

Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.

Michael Basler (M)

Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.
Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland.

Klaus-Peter Knobeloch (KP)

Institute of Neuropathology, University of Freiburg, Medical faculty, Freiburg, Germany.

Marcus Groettrup (M)

Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.
Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH