COVID-19 and Hartnup disease: an affair of intestinal amino acid malabsorption.
ACE2
Amino acids
B0AT1
COVID-19
Gastrointestinal disturbances
Hartnup disease
Journal
Eating and weight disorders : EWD
ISSN: 1590-1262
Titre abrégé: Eat Weight Disord
Pays: Germany
ID NLM: 9707113
Informations de publication
Date de publication:
Jun 2021
Jun 2021
Historique:
received:
13
06
2020
accepted:
10
07
2020
pubmed:
22
7
2020
medline:
28
5
2021
entrez:
22
7
2020
Statut:
ppublish
Résumé
Since the outbreak of COVID-19, clinicians have tried every effort to fight the disease, and multiple drugs have been proposed. However, no proven effective therapies currently exist, and different clinical phenotypes complicate the situation. In clinical practice, many severe or critically ill COVID-19 patients developed gastrointestinal (GI) disturbances, including vomiting, diarrhoea, or abdominal pain, even in the absence of cough and dyspnea. Understanding the mechanism of GI disturbances is warranted for exploring better clinical care for COVID-19 patients. With evidence collected from clinical studies on COVID-19 and basic research on a rare genetic disease (i.e., Hartnup disorder), we put forward a novel hypothesis to elaborate an effective nutritional therapy. We hypothesize that SARS-CoV-2 spike protein, binding to intestinal angiotensin-converting enzyme 2, negatively regulates the absorption of neutral amino acids, and this could explain not only the GI, but also systemic disturbances in COVID-19. Amino acid supplements could be recommended.Level of evidence No level of evidence: Hypothesis article.
Identifiants
pubmed: 32691334
doi: 10.1007/s40519-020-00963-y
pii: 10.1007/s40519-020-00963-y
pmc: PMC7369504
doi:
Substances chimiques
Amino Acids
0
Spike Glycoprotein, Coronavirus
0
spike protein, SARS-CoV-2
0
ACE2 protein, human
EC 3.4.17.23
Angiotensin-Converting Enzyme 2
EC 3.4.17.23
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1647-1651Subventions
Organisme : Fondazione Cariplo
ID : 1006-2016
Références
Mao R, Qiu Y, He JS et al (2020) Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. https://doi.org/10.1016/S2468-1253(20)30126-6
doi: 10.1016/S2468-1253(20)30126-6
pubmed: 32818457
pmcid: 7431177
Li W, Moore MJ, Vasllieva N et al (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450–454. https://doi.org/10.1038/nature02145
doi: 10.1038/nature02145
pubmed: 7095016
pmcid: 7095016
Hoffmann M, Kleine-Weber H, Schroeder S et al (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181:271–280.e8. https://doi.org/10.1016/j.cell.2020.02.052
doi: 10.1016/j.cell.2020.02.052
pubmed: 7102627
pmcid: 7102627
Walls AC, Park YJ, Tortorici MA et al (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181:281–292.e6. https://doi.org/10.1016/j.cell.2020.02.058
doi: 10.1016/j.cell.2020.02.058
pubmed: 7102599
pmcid: 7102599
Zubair AS, McAlpine LS, Gardin T et al (2020) Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: a review. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2020.2065
doi: 10.1001/jamaneurol.2020.2065
pubmed: 32469387
pmcid: 7484225
Ziegler CGK, Allon SJ, Nyquist SK et al (2020) SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 181:1016–1035. https://doi.org/10.1016/j.cell.2020.04.035
doi: 10.1016/j.cell.2020.04.035
pubmed: 7252096
pmcid: 7252096
Imai Y, Kuba K, Rao S et al (2005) Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 436:112–116. https://doi.org/10.1038/nature03712
doi: 10.1038/nature03712
pubmed: 7094998
pmcid: 7094998
Kuba K, Imai Y, Rao S et al (2005) A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 11:875–879. https://doi.org/10.1038/nm1267
doi: 10.1038/nm1267
pubmed: 16007097
pmcid: 7095783
Xu Y, Li X, Zhu B et al (2020) Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat Med 26:502–505. https://doi.org/10.1038/s41591-020-0817-4
doi: 10.1038/s41591-020-0817-4
pubmed: 32284613
Zhang H, Wada J, Hida K et al (2001) Collectrin, a collecting duct-specific transmembrane glycoprotein, is a novel homolog of ACE2 and is developmentally regulated in embryonic kidneys. J Biol Chem 276:17132–17139. https://doi.org/10.1074/jbc.M006723200
doi: 10.1074/jbc.M006723200
pubmed: 11278314
Danilczyk U, Sarao R, Remy C et al (2006) Essential role for collectrin in renal amino acid transport. Nature 444:1088–1091. https://doi.org/10.1038/nature05475
doi: 10.1038/nature05475
pubmed: 17167413
Camargo SMR, Singer D, Makrides V et al (2009) Tissue-specific amino acid transporter partners ACE2 and collectrin differentially interact with hartnup mutations. Gastroenterology 136:872–882. https://doi.org/10.1053/j.gastro.2008.10.055
doi: 10.1053/j.gastro.2008.10.055
pubmed: 19185582
Vuille-Dit-Bille RN, Camargo SM, Emmenegger L et al (2015) Human intestine luminal ACE2 and amino acid transporter expression increased by ACE-inhibitors. Amino Acids 47:693–705. https://doi.org/10.1007/s00726-014-1889-6
doi: 10.1007/s00726-014-1889-6
pubmed: 25534429
Kleta R, Romeo E, Ristic Z et al (2004) Mutations in SLC6A19, encoding B0AT1, cause Hartnup disorder. Nat Genet 36:999–1002. https://doi.org/10.1038/ng1405
doi: 10.1038/ng1405
pubmed: 15286787
Seow HF, Bröer S, Bröer A et al (2004) Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19. Nat Genet 36:1003–1007. https://doi.org/10.1038/ng1406
doi: 10.1038/ng1406
pubmed: 15286788
Gupta R, Charron J, Stenger CL et al (2020) SARS-CoV-2 (COVID-19) structural and evolutionary dynamicome: insights into functional evolution and human genomics. J Biol Chem. https://doi.org/10.1074/jbc.ra120.014873 (Online ahead of print)
doi: 10.1074/jbc.ra120.014873
pubmed: 33158920
pmcid: 7650242
Perlot T, Penninger JM (2013) ACE2—from the renin-angiotensin system to gut microbiota and malnutrition. Microbes Infect 15:866–873
doi: 10.1016/j.micinf.2013.08.003
Jando J, Camargo SMR, Herzog B, Verrey F (2017) Expression and regulation of the neutral amino acid transporter B0AT1 in rat small intestine. PLoS One. https://doi.org/10.1371/journal.pone.0184845
doi: 10.1371/journal.pone.0184845
pubmed: 28915252
pmcid: 5600382
Li H, Liu L, Zhang D et al (2020) SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet 395:1517–1520
doi: 10.1016/S0140-6736(20)30920-X
D’Antona G, Ragni M, Cardile A et al (2010) Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice. Cell Metab 12:362–372. https://doi.org/10.1016/j.cmet.2010.08.016
doi: 10.1016/j.cmet.2010.08.016
pubmed: 20889128
Yang Z, Huang S, Zou D et al (2016) Metabolic shifts and structural changes in the gut microbiota upon branched-chain amino acid supplementation in middle-aged mice. Amino Acids 48:2731–2745. https://doi.org/10.1007/s00726-016-2308-y
doi: 10.1007/s00726-016-2308-y
pubmed: 27539648
Lamers MM, Beumer J, van der Vaart J et al (2020) SARS-CoV-2 productively infects human gut enterocytes. Science. https://doi.org/10.1126/science.abc1669 (Online ahead of print)
doi: 10.1126/science.abc1669
pubmed: 32631886
pmcid: 7199907
Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q (2020) Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367:1444–1448
doi: 10.1126/science.abb2762