Exploring Protein Intrinsic Disorder with MobiDB.
Database
Disorder annotation
Disorder prediction
IDP
IDR
Intrinsic disorder
Intrinsically disordered proteins
Intrinsically disordered regions
MobiDB
Structural flexibility
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2020
2020
Historique:
entrez:
23
7
2020
pubmed:
23
7
2020
medline:
11
3
2021
Statut:
ppublish
Résumé
Nowadays, it is well established that many proteins or regions under physiological conditions lack a fixed three-dimensional structure and are intrinsically disordered. MobiDB is the main repository of protein disorder and mobility annotations, combining different data sources to provide an exhaustive overview of intrinsic disorder. MobiDB includes curated annotations from other databases, indirect disorder evidence from structural data, and disorder predictions from protein sequences. It provides an easy-to-use web server to visualize and explore disorder information. This chapter describes the data available in MobiDB, emphasizing how to use and access the intrinsic disorder data. MobiDB is available at URL http://mobidb.bio.unipd.it .
Identifiants
pubmed: 32696355
doi: 10.1007/978-1-0716-0524-0_6
doi:
Substances chimiques
Intrinsically Disordered Proteins
0
beta Catenin
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
127-143Références
Van Der Lee R, Buljan M, Lang B et al (2014) Classification of intrinsically disordered regions and proteins. Chem Rev 114:6589–6631
pubmed: 24773235
pmcid: 4095912
Tompa P, Schad E, Tantos A et al (2015) Intrinsically disordered proteins: emerging interaction specialists. Curr Opin Struct Biol 35:49–59
pubmed: 26402567
Pancsa R, Tompa P (2012) Structural disorder in eukaryotes. PLoS One 7(4):e34687
pubmed: 22496841
pmcid: 3320622
Xue B, Dunker AK, Uversky VN (2012) Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J Biomol Struct Dyn 30:137–149
Uversky VN, Gillespie JR, Fink AL (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41:415–427
pubmed: 11025552
Romero P, Obradovic Z, Li X et al (2001) Sequence complexity of disordered protein. Proteins 42:38–48
Davey NE (2019) The functional importance of structure in unstructured protein regions. Curr Opin Struct Biol 56:155–163
pubmed: 31003202
Fuxreiter M, Simon I, Friedrich P et al (2004) Preformed structural elements feature in partner recognition by intrinsically unstructured proteins. J Mol Biol 338:1015–1026
pubmed: 15111064
Gouw M, Michael S, Sámano-Sánchez H et al (2018) The eukaryotic linear motif resource—2018 update. Nucleic Acids Res 46(D1):D428–D434
pubmed: 29136216
Schad E, Fichó E, Pancsa R et al (2018) DIBS: a repository of disordered binding sites mediating interactions with ordered proteins. Bioinformatics 34:535–537
pubmed: 29385418
Van Roey K, Uyar B, Weatheritt RJ et al (2014) Short linear motifs: ubiquitous and functionally diverse protein interaction modules directing cell regulation. Chem Rev 114:6733–6778
pubmed: 24926813
Callaway E (2015) The revolution will not be crystallized: a new method sweeps through structural biology. Nature 525:172–174
pubmed: 26354465
Cheng Y (2015) Single-particle Cryo-EM at crystallographic resolution. Cell 161:450–457
pubmed: 25910205
pmcid: 4409662
Felli IC, Pierattelli R (2012) Recent progress in NMR spectroscopy: toward the study of intrinsically disordered proteins of increasing size and complexity. IUBMB Life 64:473–481
pubmed: 22556167
Theillet F-X, Binolfi A, Bekei B et al (2016) Structural disorder of monomeric α-synuclein persists in mammalian cells. Nature 530:45–50
pubmed: 26808899
Schuler B, Soranno A, Hofmann H et al (2016) Single-molecule FRET spectroscopy and the polymer physics of unfolded and intrinsically disordered proteins. Annu Rev Biophys 45:207–231
pubmed: 27145874
Di Domenico T, Walsh I, Martin AJM et al (2012) MobiDB: a comprehensive database of intrinsic protein disorder annotations. Bioinformatics 28:2080–2081
pubmed: 22661649
Piovesan D, Tabaro F, Mičetić I et al (2017) DisProt 7.0: a major update of the database of disordered proteins. Nucleic Acids Res 45:D1123–D1124
pubmed: 27965415
Fukuchi S, Amemiya T, Sakamoto S et al (2014) IDEAL in 2014 illustrates interaction networks composed of intrinsically disordered proteins and their binding partners. Nucleic Acids Res 42:D320–D325
pubmed: 24178034
Fichó E, Reményi I, Simon I et al (2017) MFIB: a repository of protein complexes with mutual folding induced by binding. Bioinformatics 33:3682–3684
pubmed: 29036655
pmcid: 5870711
Miskei M, Antal C, Fuxreiter M (2017) FuzDB: database of fuzzy complexes, a tool to develop stochastic structure-function relationships for protein complexes and higher-order assemblies. Nucleic Acids Res 45:D228–D235
pubmed: 27794553
Piovesan D, Tabaro F, Paladin L et al (2018) MobiDB 3.0: more annotations for intrinsic disorder, conformational diversity and interactions in proteins. Nucleic Acids Res 46:D471–D476
pubmed: 29136219
Potenza E, Di Domenico T, Walsh I et al (2015) MobiDB 2.0: an improved database of intrinsically disordered and mobile proteins. Nucleic Acids Res 43:D315–D320
pubmed: 25361972
UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506–D515
El-Gebali S, Mistry J, Bateman A et al (2019) The Pfam protein families database in 2019. Nucleic Acids Res 47:D427–D432
pubmed: 30357350
Lewis TE, Sillitoe I, Dawson N et al (2018) Gene3D: extensive prediction of globular domains in proteins. Nucleic Acids Res 46:D1282
pubmed: 29194501
Necci M, Piovesan D, Tosatto SCE (2018) Where differences resemble: sequence-feature analysis in curated databases of intrinsically disordered proteins. Database. 2018;2018:bay127. https://doi.org/10.1093/database/bay127
Vilella AJ, Severin J, Ureta-Vidal A et al (2009) EnsemblCompara GeneTrees: complete, duplication-aware phylogenetic trees in vertebrates. Genome Res 19:327–335
pubmed: 19029536
pmcid: 2652215
Piovesan D, Tosatto SCE (2018) Mobi 2.0: an improved method to define intrinsic disorder, mobility and linear binding regions in protein structures. Bioinformatics 34:122–123
pubmed: 28968795
Ulrich EL, Akutsu H, Doreleijers JF et al (2008) BioMagResBank. Nucleic Acids Res 36:D402–D408
pubmed: 17984079
Martin AJM, Walsh I, Tosatto SCE (2010) MOBI: a web server to define and visualize structural mobility in NMR protein ensembles. Bioinformatics 26:2916–2917
pubmed: 20861031
Piovesan D, Minervini G, Tosatto SCE (2016) The RING 2.0 web server for high quality residue interaction networks. Nucleic Acids Res 44:W367–W374
pubmed: 27198219
pmcid: 4987896
Sormanni P, Piovesan D, Heller GT et al (2017) Simultaneous quantification of protein order and disorder. Nat Chem Biol 13:339–342
Camilloni C, De Simone A, Vranken WF et al (2012) Determination of secondary structure populations in disordered states of proteins using nuclear magnetic resonance chemical shifts. Biochemistry 51:2224–2231
pubmed: 22360139
Berjanskii MV, Wishart DS (2005) A simple method to predict protein flexibility using secondary chemical shifts. J Am Chem Soc 127:14970–14971
pubmed: 16248604
Monzon AM, Rohr CO, Fornasari MS et al (2016) CoDNaS 2.0: a comprehensive database of protein conformational diversity in the native state. Database 2016:baw038
pubmed: 27022160
pmcid: 4809262
Linding R, Jensen LJ, Diella F et al (2003) Protein disorder prediction: implications for structural proteomics. Structure 11:1453–1459
pubmed: 14604535
Walsh I, Martin AJM, Di Domenico T et al (2012) ESpritz: accurate and fast prediction of protein disorder. Bioinformatics 28:503–509
pubmed: 22190692
Linding R, Russell RB, Neduva V et al (2003) GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Res 31:3701–3708
pubmed: 12824398
pmcid: 169197
Dosztányi Z, Csizmok V, Tompa P et al (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21:3433–3434
Yang ZR, Thomson R, McNeil P et al (2005) RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 21:3369–3376
pubmed: 15947016
Peng K, Radivojac P, Vucetic S et al (2006) Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 7:208
pubmed: 16618368
pmcid: 1479845
Cilia E, Pancsa R, Tompa P et al (2013) From protein sequence to dynamics and disorder with DynaMine. Nat Commun 4:2741
pubmed: 24225580
Mészáros B, Simon I, Dosztányi Z (2009) Prediction of protein binding regions in disordered proteins. PLoS Comput Biol 5:e1000376
pubmed: 2671142
pmcid: 2671142
Piovesan D, Walsh I, Minervini G et al (2017) FELLS: fast estimator of latent local structure. Bioinformatics 33:1889–1891
pubmed: 28186245
Wootton JC (1994) Non-globular domains in protein sequences: automated segmentation using complexity measures. Comput Chem 18:269–285
pubmed: 7952898
Jones DT, Swindells MB (2002) Getting the most from PSI-BLAST. Trends Biochem Sci 27:161–164
pubmed: 11893514
Necci M, Piovesan D, Dosztányi Z et al (2017) MobiDB-lite: fast and highly specific consensus prediction of intrinsic disorder in proteins. Bioinformatics 33:1402–1404
pubmed: 28453683
Das RK, Pappu RV (2013) Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. Proc Natl Acad Sci U S A 110:13392–13397
pubmed: 23901099
pmcid: 3746876
Peifer M, Rauskolb C, Williams M et al (1991) The segment polarity gene armadillo interacts with the wingless signaling pathway in both embryonic and adult pattern formation. Development 111:1029–1043
pubmed: 1879348
Noordermeer J, Klingensmith J, Perrimon N et al (1994) Dishevelled and armadillo act in the wingless signalling pathway in drosophila. Nature 367:80–83
pubmed: 7906389
Peifer M, Berg S, Reynolds AB (1994) A repeating amino acid motif shared by proteins with diverse cellular roles. Cell 76:789–791
pubmed: 7907279
Kraus C, Liehr T, Hülsken J et al (1994) Localization of the human beta-catenin gene (CTNNB1) to 3p21: a region implicated in tumor development. Genomics 23:272–274
pubmed: 7829088
MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9–26
pubmed: 19619488
pmcid: 2861485
Huber AH, Nelson WJ, Weis WI (1997) Three-dimensional structure of the armadillo repeat region of beta-catenin. Cell 90:871–882
pubmed: 9298899
Xing Y, Takemaru K-I, Liu J et al (2008) Crystal structure of a full-length beta-catenin. Structure 16:478–487
pubmed: 18334222
pmcid: 4267759
Wu G, Xu G, Schulman BA et al (2003) Structure of a beta-TrCP1-Skp1-beta-catenin complex: destruction motif binding and lysine specificity of the SCF(beta-TrCP1) ubiquitin ligase. Mol Cell 11:1445–1456
pubmed: 12820959
Radivojac P, Obradovic Z, Smith DK et al (2004) Protein flexibility and intrinsic disorder. Protein Sci 13:71–80
pubmed: 14691223
pmcid: 2286519
Schlessinger A, Schaefer C, Vicedo E et al (2011) Protein disorder--a breakthrough invention of evolution? Curr Opin Struct Biol 21:412–418
pubmed: 21514145
Ward JJ, Sodhi JS, McGuffin LJ et al (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337:635–645
pubmed: 15019783
Brown CJ, Takayama S, Campen AM et al (2002) Evolutionary rate heterogeneity in proteins with long disordered regions. J Mol Evol 55:104–110
Bellay J, Han S, Michaut M et al (2011) Bringing order to protein disorder through comparative genomics and genetic interactions. Genome Biol 12:R14
pubmed: 21324131
pmcid: 3188796
Uversky VN (2002) What does it mean to be natively unfolded? Eur J Biochem 269:2–12
pubmed: 11784292
Vucetic S, Brown CJ, Dunker AK et al (2003) Flavors of protein disorder. Proteins 52:573–584
pubmed: 12910457
Walsh I, Giollo M, Di Domenico T et al (2015) Comprehensive large-scale assessment of intrinsic protein disorder. Bioinformatics 31:201–208
pubmed: 25246432
UniProt Consortium (2014) Activities at the universal protein resource (UniProt). Nucleic Acids Res 42:D191–D198
Uversky VN, Dunker AK (2010) Understanding protein non-folding. Biochim Biophys Acta 1804:1231–1264
pubmed: 20117254
pmcid: 2882790
Yanagiya A, Suyama E, Adachi H et al (2012) Translational homeostasis via the mRNA cap-binding protein, eIF4E. Mol Cell 46:847–858
pubmed: 22578813
pmcid: 4085128
Fletcher CM, Wagner G (1998) The interaction of eIF4E with 4E-BP1 is an induced fit to a completely disordered protein. Protein Sci 7:1639–1642
pubmed: 9684899
pmcid: 2144065
Mader S, Lee H, Pause A et al (1995) The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol Cell Biol 15:4990–4997
pubmed: 7651417
pmcid: 230746
Kannan S, Lane DP, Verma CS (2016) Long range recognition and selection in IDPs: the interactions of the C-terminus of p53. Sci Rep 6:23750
pubmed: 27030593
pmcid: 4814905
Noivirt-Brik O, Prilusky J, Sussman JL (2009) Assessment of disorder predictions in CASP8. Proteins 77(Suppl 9):210–216
pubmed: 19774619
De Simone A, Cavalli A, S-TD H et al (2009) Accurate random coil chemical shifts from an analysis of loop regions in native states of proteins. J Am Chem Soc 131:16332–16333
pubmed: 19852475