Cbl Negatively Regulates NLRP3 Inflammasome Activation through GLUT1-Dependent Glycolysis Inhibition.
Biological Transport, Active
Cell Membrane
/ metabolism
Gene Knockout Techniques
Glucose
/ metabolism
Glucose Transporter Type 1
/ genetics
Glycolysis
HEK293 Cells
Humans
Inflammasomes
/ immunology
Mitochondria
/ metabolism
Models, Biological
NLR Family, Pyrin Domain-Containing 3 Protein
/ metabolism
Oxidative Phosphorylation
Proto-Oncogene Proteins c-cbl
/ antagonists & inhibitors
RNA Processing, Post-Transcriptional
RNA, Messenger
/ genetics
Reactive Oxygen Species
/ metabolism
THP-1 Cells
Cbl
GLUT1
NLRP3
glycolysis
inflammasome
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
19 Jul 2020
19 Jul 2020
Historique:
received:
15
06
2020
revised:
11
07
2020
accepted:
17
07
2020
entrez:
26
7
2020
pubmed:
28
7
2020
medline:
17
2
2021
Statut:
epublish
Résumé
Activation of the nod-like receptor 3 (NLRP3) inflammasomes is crucial for immune defense, but improper and excessive activation causes inflammatory diseases. We previously reported that Cbl plays a pivotal role in suppressing NLRP3 inflammasome activation by inhibiting Pyk2-mediated apoptosis-associated speck-like protein containing a CARD (ASC) oligomerization. Here, we showed that Cbl dampened NLRP3 inflammasome activation by inhibiting glycolysis, as demonstrated with Cbl knockout cells and treatment with the Cbl inhibitor hydrocotarnine. We revealed that the inhibition of Cbl promoted caspase-1 cleavage and interleukin (IL)-1β secretion through a glycolysis-dependent mechanism. Inhibiting Cbl increased cellular glucose uptake, glycolytic capacity, and mitochondrial oxidative phosphorylation capacity. Upon NLRP3 inflammasome activation, inhibiting Cbl increased glycolysis-dependent activation of mitochondrial respiration and increased the production of reactive oxygen species, which contributes to NLRP3 inflammasome activation and IL-1β secretion. Mechanistically, inhibiting Cbl increased surface expression of glucose transporter 1 (GLUT1) protein through post-transcriptional regulation, which increased cellular glucose uptake and consequently raised glycolytic capacity, and in turn enhanced NLRP3 inflammasome activation. Together, our findings provide new insights into the role of Cbl in NLRP3 inflammasome regulation through GLUT1 downregulation. We also show that a novel Cbl inhibitor, hydrocortanine, increased NLRP3 inflammasome activity via its effect on glycolysis.
Identifiants
pubmed: 32707731
pii: ijms21145104
doi: 10.3390/ijms21145104
pmc: PMC7404051
pii:
doi:
Substances chimiques
Glucose Transporter Type 1
0
Inflammasomes
0
NLR Family, Pyrin Domain-Containing 3 Protein
0
NLRP3 protein, human
0
RNA, Messenger
0
Reactive Oxygen Species
0
SLC2A1 protein, human
0
Proto-Oncogene Proteins c-cbl
EC 2.3.2.27
CBL protein, human
EC 6.3.2.-
Glucose
IY9XDZ35W2
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
Cell Death Dis. 2018 Oct 31;9(11):1109
pubmed: 30382081
Mol Cell Proteomics. 2012 Nov;11(11):1230-44
pubmed: 22869553
Nat Immunol. 2017 Mar;18(3):283-292
pubmed: 28092375
Cell Rep. 2015 Jul 7;12(1):102-115
pubmed: 26119735
Nat Immunol. 2016 Sep;17(9):1046-56
pubmed: 27478939
Diabetes. 2013 Jan;62(1):194-204
pubmed: 23086037
Nat Immunol. 2013 Dec;14(12):1247-55
pubmed: 24185614
J Immunol. 2013 Nov 15;191(10):5230-8
pubmed: 24089192
J Autoimmun. 2018 Jul;91:13-22
pubmed: 29610014
Cytokine. 2020 Mar;127:154951
pubmed: 31837587
Lancet Diabetes Endocrinol. 2016 Feb;4(2):148-58
pubmed: 26656292
Nature. 2018 Aug;560(7717):198-203
pubmed: 30046112
Nature. 2006 Mar 9;440(7081):237-41
pubmed: 16407889
Nutrients. 2019 Feb 28;11(3):
pubmed: 30823406
J Immunol. 2009 Nov 1;183(9):5823-9
pubmed: 19812205
Circ Res. 2018 Jun 8;122(12):1722-1740
pubmed: 29880500
J Infect. 2012 Feb;64(2):148-55
pubmed: 22101078
Nat Immunol. 2011 Mar;12(3):222-30
pubmed: 21151103
Biochim Biophys Acta. 2013 Jan;1833(1):122-39
pubmed: 23085373
J Clin Invest. 2004 Nov;114(9):1326-33
pubmed: 15520865
Nature. 2013 Jan 31;493(7434):674-8
pubmed: 23254930
J Biol Chem. 2014 Mar 14;289(11):7884-96
pubmed: 24492615
Clin Infect Dis. 2005 Aug 1;41(3):281-8
pubmed: 16007521
Nature. 2006 Mar 9;440(7081):228-32
pubmed: 16407890
Diabetes Care. 2018 Mar;41(3):513-521
pubmed: 29330152
Immunity. 2013 Jun 27;38(6):1142-53
pubmed: 23809161
JAMA. 2016 Jul 19;316(3):325-37
pubmed: 27434444
J Exp Med. 2016 Mar 7;213(3):337-54
pubmed: 26926996
J Mol Biol. 2005 Aug 19;351(3):573-97
pubmed: 16024040
Nat Commun. 2016 Oct 25;7:13280
pubmed: 27779186
Mol Cell. 2012 Oct 26;48(2):158-67
pubmed: 23102266
J Biol Chem. 2007 Feb 2;282(5):2871-9
pubmed: 17132626
Nat Med. 2016 Sep;22(9):1002-12
pubmed: 27455510
J Biol Chem. 2003 Mar 7;278(10):8516-25
pubmed: 12496265
Am J Respir Crit Care Med. 2017 Sep 15;196(6):713-726
pubmed: 28245134
Ann Rheum Dis. 2014 Jun;73(6):1202-10
pubmed: 23687262
Immunity. 2012 Mar 23;36(3):401-14
pubmed: 22342844
Cell. 2014 Mar 13;156(6):1193-1206
pubmed: 24630722
Front Microbiol. 2011 Feb 02;2:12
pubmed: 21687408
Mol Cancer. 2018 Nov 17;17(1):158
pubmed: 30447690
Sci Rep. 2016 Oct 31;6:36214
pubmed: 27796369
Nature. 2011 Jan 13;469(7329):221-5
pubmed: 21124315
Nat Rev Immunol. 2016 Jul;16(7):407-20
pubmed: 27291964