Yolk sac-derived Pdcd11-positive cells modulate zebrafish microglia differentiation through the NF-κB-Tgfβ1 pathway.
Animals
Brain
/ metabolism
Cell Differentiation
/ physiology
Cytokines
/ metabolism
Inflammation
/ metabolism
Macrophages
/ metabolism
Microglia
/ metabolism
NF-kappa B
/ metabolism
Neurogenesis
Signal Transduction
Transforming Growth Factor beta1
/ metabolism
Yolk Sac
/ metabolism
Zebrafish
Zebrafish Proteins
/ metabolism
Journal
Cell death and differentiation
ISSN: 1476-5403
Titre abrégé: Cell Death Differ
Pays: England
ID NLM: 9437445
Informations de publication
Date de publication:
01 2021
01 2021
Historique:
received:
03
03
2020
accepted:
09
07
2020
revised:
07
07
2020
pubmed:
28
7
2020
medline:
21
12
2021
entrez:
26
7
2020
Statut:
ppublish
Résumé
Microglia are the primary immune cells in the central nervous system, which plays a vital role in neuron development and neurodegenerative diseases. Microglial precursors in peripheral hematopoietic tissues colonize the central nervous system during early embryogenesis. However, how intrinsic and extrinsic signals integrate to regulate microglia's differentiation remains undefined. In this study, we identified the cerebral white matter hyperintensities susceptibility gene, programmed cell death protein 11 (PDCD11), as an essential factor regulating microglia differentiation. In zebrafish, pdcd11 deficiency prevents the differentiation of the precursors to mature brain microglia. Although, the inflammatory featured macrophage brain colonization is augmented. At 22 h post fertilization, the Pdcd11-positive cells on the yolk sac are distinct from macrophages and neutrophils. Mechanistically, PDCD11 exerts its physiological role by differentially regulating the functions of nuclear factor-kappa B family members, P65 and c-Rel, suppressing P65-mediated expression of inflammatory cytokines, such as tnfα, and enhancing the c-Rel-dependent appearance of tgfβ1. The present study provides novel insights in understanding microglia differentiation during zebrafish development.
Identifiants
pubmed: 32709934
doi: 10.1038/s41418-020-0591-3
pii: 10.1038/s41418-020-0591-3
pmc: PMC7853042
doi:
Substances chimiques
Cytokines
0
NF-kappa B
0
Transforming Growth Factor beta1
0
Zebrafish Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
170-183Références
Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ. 2010;341:c3666.
pubmed: 20660506
pmcid: 2910261
doi: 10.1136/bmj.c3666
Fornage M, Chiang YA, O’Meara ES, Psaty BM, Reiner AP, Siscovick DS, et al. Biomarkers of inflammation and MRI-defined small vessel disease of the brain: the Cardiovascular Health Study. Stroke. 2008;39:1952–9.
pubmed: 18436879
pmcid: 2888487
doi: 10.1161/STROKEAHA.107.508135
Gouw AA, Seewann A, van der Flier WM, Barkhof F, Rozemuller AM, Scheltens P, et al. Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations. J Neurol Neurosurg Psychiatry. 2011;82:126–35.
pubmed: 20935330
doi: 10.1136/jnnp.2009.204685
pmcid: 20935330
Wright CB, Moon Y, Paik MC, Brown TR, Rabbani L, Yoshita M, et al. Inflammatory biomarkers of vascular risk as correlates of leukoariosis. Stroke. 2009;40:3466–71.
pubmed: 19696417
pmcid: 3114944
doi: 10.1161/STROKEAHA.109.559567
Fornage M, Debette S, Bis JC, Schmidt H, Ikram MA, Dufouil C, et al. Genome-wide association studies of cerebral white matter lesion burden: the CHARGE consortium. Ann Neurol. 2011;69:928–39.
pubmed: 21681796
pmcid: 3122147
doi: 10.1002/ana.22403
Hofer E, Cavalieri M, Bis JC, DeCarli C, Fornage M, Sigurdsson S, et al. White matter lesion progression: genome-wide search for genetic influences. Stroke. 2015;46:3048–57.
pubmed: 26451028
pmcid: 4749149
doi: 10.1161/STROKEAHA.115.009252
Verhaaren BF, Debette S, Bis JC, Smith JA, Ikram MK, Adams HH, et al. Multiethnic genome-wide association study of cerebral white matter hyperintensities on MRI. Circ Cardiovasc Genet. 2015;8:398–409.
pubmed: 25663218
pmcid: 4427240
doi: 10.1161/CIRCGENETICS.114.000858
Lee J, Hamanaka G, Lo EH, Arai K. Heterogeneity of microglia and their differential roles in white matter pathology. CNS Neurosci Ther. 2019;25:1290–8.
pubmed: 31733036
pmcid: 6887901
doi: 10.1111/cns.13266
Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states. Br J Pharmacol. 2016;173:649–65.
pubmed: 25800044
doi: 10.1111/bph.13139
Herbomel P, Thisse B, Thisse C. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev Biol. 2001;238:274–88.
pubmed: 11784010
doi: 10.1006/dbio.2001.0393
Mazzolini J, Le Clerc S, Morisse G, Coulonges C, Kuil LE, van Ham TJ, et al. Gene expression profiling reveals a conserved microglia signature in larval zebrafish. Glia. 2020;68:298–315.
pubmed: 31508850
doi: 10.1002/glia.23717
Kuil LE, Oosterhof N, Geurts SN, van der Linde HC, Meijering E, van Ham TJ. Reverse genetic screen reveals that Il34 facilitates yolk sac macrophage distribution and seeding of the brain. Dis Model Mech. 2019;12:dmm037762.
pubmed: 30765415
pmcid: 6451432
doi: 10.1242/dmm.037762
Wu S, Xue R, Hassan S, Nguyen TML, Wang T, Pan H, et al. Il34-Csf1r pathway regulates the migration and colonization of microglial precursors. Dev Cell. 2018;46:552–563e554.
pubmed: 30205037
doi: 10.1016/j.devcel.2018.08.005
Travis MA, Sheppard D. TGF-beta activation and function in immunity. Annu Rev Immunol. 2014;32:51–82.
pubmed: 24313777
doi: 10.1146/annurev-immunol-032713-120257
Lund H, Pieber M, Parsa R, Grommisch D, Ewing E, Kular L, et al. Fatal demyelinating disease is induced by monocyte-derived macrophages in the absence of TGF-beta signaling. Nat Immunol. 2018;19:1–7.
pubmed: 29662171
pmcid: 7309278
doi: 10.1038/s41590-018-0091-5
Zoller T, Schneider A, Kleimeyer C, Masuda T, Potru PS, Pfeifer D, et al. Silencing of TGFbeta signalling in microglia results in impaired homeostasis. Nat Commun. 2018;9:4011.
pubmed: 30275444
pmcid: 6167353
doi: 10.1038/s41467-018-06224-y
Derenzini M, Montanaro L, Trere D. Ribosome biogenesis and cancer. Acta Histochem. 2017;119:190–7.
pubmed: 28168996
doi: 10.1016/j.acthis.2017.01.009
pmcid: 28168996
Mills EW, Green R. Ribosomopathies: There’s strength in numbers. Science. 2017;358:eaan2755.
pubmed: 29097519
doi: 10.1126/science.aan2755
Morcelle C, Menoyo S, Moron-Duran FD, Tauler A, Kozma SC, Thomas G, et al. Oncogenic MYC induces the impaired ribosome biogenesis checkpoint and stabilizes p53 independent of increased ribosome content. Cancer Res. 2019;79:4348–59.
pubmed: 31292158
doi: 10.1158/0008-5472.CAN-18-2718
pmcid: 31292158
Berghmans S, Murphey RD, Wienholds E, Neuberg D, Kutok JL, Fletcher CD, et al. tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc Natl Acad Sci USA. 2005;102:407–12.
pubmed: 15630097
pmcid: 544293
doi: 10.1073/pnas.0406252102
Xu J, Wang T, Wu Y, Jin W, Wen Z. Microglia colonization of developing zebrafish midbrain is promoted by apoptotic neuron and lysophosphatidylcholine. Dev Cell. 2016;38:214–22.
pubmed: 27424497
doi: 10.1016/j.devcel.2016.06.018
Oosterhof N, Kuil LE, van der Linde HC, Burm SM, Berdowski W, van Ijcken WFJ, et al. Colony-stimulating factor 1 receptor (CSF1R) regulates microglia density and distribution, but not microglia differentiation in vivo. Cell Rep. 2018;24:1203–1217e1206.
pubmed: 30067976
doi: 10.1016/j.celrep.2018.06.113
Nguyen-Chi M, Laplace-Builhe B, Travnickova J, Luz-Crawford P, Tejedor G, Phan QT, et al. Identification of polarized macrophage subsets in zebrafish. Elife. 2015;4:e07288.
pubmed: 26154973
pmcid: 4521581
doi: 10.7554/eLife.07288
Lu XJ, Chen Q, Rong YJ, Chen F, Chen J. CXCR3.1 and CXCR3.2 differentially contribute to macrophage polarization in teleost fish. J Immunol. 2017;198:4692–706.
pubmed: 28500070
doi: 10.4049/jimmunol.1700101
Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, et al. Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci. 2014;17:131–43.
pubmed: 24316888
doi: 10.1038/nn.3599
Buttgereit A, Lelios I, Yu X, Vrohlings M, Krakoski NR, Gautier EL, et al. Sall1 is a transcriptional regulator defining microglia identity and function. Nat Immunol. 2016;17:1397–406.
pubmed: 27776109
doi: 10.1038/ni.3585
Sweet T, Khalili K, Sawaya BE, Amini S. Identification of a novel protein from glial cells based on its ability to interact with NF-kappaB subunits. J Cell Biochem. 2003;90:884–91.
pubmed: 14624448
doi: 10.1002/jcb.10701
Sweet T, Sawaya BE, Khalili K, Amini S. Interplay between NFBP and NF-kappaB modulates tat activation of the LTR. J Cell Physiol. 2005;204:375–80.
pubmed: 15887232
doi: 10.1002/jcp.20419
Dyson HJ, Komives EA. Role of disorder in IkappaB-NFkappaB interaction. IUBMB Life. 2012;64:499–505.
pubmed: 22573609
pmcid: 3575514
doi: 10.1002/iub.1044
Stark LA, Dunlop MG. Nucleolar sequestration of RelA (p65) regulates NF-kappaB-driven transcription and apoptosis. Mol Cell Biol. 2005;25:5985–6004.
pubmed: 15988014
pmcid: 1168799
doi: 10.1128/MCB.25.14.5985-6004.2005
Daroczi B, Kari G, Ren Q, Dicker AP, Rodeck U. Nuclear factor kappaB inhibitors alleviate and the proteasome inhibitor PS-341 exacerbates radiation toxicity in zebrafish embryos. Mol Cancer Ther. 2009;8:2625–34.
pubmed: 19723885
pmcid: 2846641
doi: 10.1158/1535-7163.MCT-09-0198
Wang T, Yan B, Lou L, Lin X, Yu T, Wu S, et al. Nlrc3-like is required for microglia maintenance in zebrafish. J Genet Genomics. 2019;46:291–9.
pubmed: 31278008
doi: 10.1016/j.jgg.2019.06.002
pmcid: 31278008
Don EK, Formella I, Badrock AP, Hall TE, Morsch M, Hortle E, et al. A Tol2 gateway-compatible toolbox for the study of the nervous system and neurodegenerative disease. Zebrafish. 2017;14:69–72.
pubmed: 27631880
doi: 10.1089/zeb.2016.1321
pmcid: 27631880
Harvie EA, Green JM, Neely MN, Huttenlocher A. Innate immune response to Streptococcus iniae infection in zebrafish larvae. Infect Immun. 2013;81:110–21.
pubmed: 23090960
pmcid: 3536132
doi: 10.1128/IAI.00642-12
Kanther M, Sun X, Muhlbauer M, Mackey LC, Flynn EJ 3rd, Bagnat M, et al. Microbial colonization induces dynamic temporal and spatial patterns of NF-kappaB activation in the zebrafish digestive tract. Gastroenterology. 2011;141:197–207.
pubmed: 21439961
doi: 10.1053/j.gastro.2011.03.042
pmcid: 21439961
Baeuerle PA, Henkel T. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol. 1994;12:141–79.
pubmed: 8011280
doi: 10.1146/annurev.iy.12.040194.001041
pmcid: 8011280
Barnes PJ, Karin M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N. Engl J Med. 1997;336:1066–71.
pubmed: 9091804
doi: 10.1056/NEJM199704103361506
pmcid: 9091804
Grinberg-Bleyer Y, Oh H, Desrichard A, Bhatt DM, Caron R, Chan TA, et al. NF-kappaB c-Rel is crucial for the regulatory T cell immune checkpoint in cancer. Cell. 2017;170:1096–1108e1013.
pubmed: 28886380
pmcid: 5633372
doi: 10.1016/j.cell.2017.08.004
De Siervi A, De Luca P, Moiola C, Gueron G, Tongbai R, Chandramouli GV, et al. Identification of new Rel/NFkappaB regulatory networks by focused genome location analysis. Cell Cycle. 2009;8:2093–100.
pubmed: 19502793
doi: 10.4161/cc.8.13.8926
pmcid: 19502793
Hase Y, Horsburgh K, Ihara M, Kalaria RN. White matter degeneration in vascular and other ageing-related dementias. J Neurochem. 2018;144:617–33.
pubmed: 29210074
doi: 10.1111/jnc.14271
Skripuletz T, Hackstette D, Bauer K, Gudi V, Pul R, Voss E, et al. Astrocytes regulate myelin clearance through recruitment of microglia during cuprizone-induced demyelination. Brain. 2013;136:147–67.
pubmed: 23266461
doi: 10.1093/brain/aws262
pmcid: 23266461
Lampron A, Larochelle A, Laflamme N, Prefontaine P, Plante MM, Sanchez MG, et al. Inefficient clearance of myelin debris by microglia impairs remyelinating processes. J Exp Med. 2015;212:481–95.
pubmed: 25779633
pmcid: 4387282
doi: 10.1084/jem.20141656
Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330:841–5.
pubmed: 20966214
pmcid: 3719181
doi: 10.1126/science.1194637
Ferrero G, Mahony CB, Dupuis E, Yvernogeau L, Di Ruggiero E, Miserocchi M, et al. Embryonic Microglia derive from primitive macrophages and are replaced by cmyb-dependent definitive microglia in zebrafish. Cell Rep. 2018;24:130–41.
pubmed: 29972775
doi: 10.1016/j.celrep.2018.05.066
Robertson IB, Rifkin DB. Regulation of the bioavailability of TGF-beta and TGF-beta-related proteins. Cold Spring Harb Perspect Biol. 2016;8:a021907.
pubmed: 27252363
pmcid: 4888822
doi: 10.1101/cshperspect.a021907
Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature. 1992;359:693–9.
pubmed: 1436033
pmcid: 3889166
doi: 10.1038/359693a0
Chen X, Kandasamy K, Srivastava RK. Differential roles of RelA (p65) and c-Rel subunits of nuclear factor kappa B in tumor necrosis factor-related apoptosis-inducing ligand signaling. Cancer Res. 2003;63:1059–66.
pubmed: 12615723
pmcid: 12615723
Pizzi M, Goffi F, Boroni F, Benarese M, Perkins SE, Liou HC, et al. Opposing roles for NF-kappa B/Rel factors p65 and c-Rel in the modulation of neuron survival elicited by glutamate and interleukin-1beta. J Biol Chem. 2002;277:20717–23.
pubmed: 11912207
doi: 10.1074/jbc.M201014200
Pohl T, Gugasyan R, Grumont RJ, Strasser A, Metcalf D, Tarlinton D, et al. The combined absence of NF-kappa B1 and c-Rel reveals that overlapping roles for these transcription factors in the B cell lineage are restricted to the activation and function of mature cells. Proc Natl Acad Sci USA. 2002;99:4514–9.
pubmed: 11930006
pmcid: 123679
doi: 10.1073/pnas.072071599
Tanabe S, Yamashita T. B-1a lymphocytes promote oligodendrogenesis during brain development. Nat Neurosci. 2018;21:506–16.
pubmed: 29507409
doi: 10.1038/s41593-018-0106-4
Ferrero G, Gomez E, Lyer S, Rovira M, Miserocchi M, Langenau DM, et al. The macrophage-expressed gene (mpeg) 1 identifies a subpopulation of B cells in the adult zebrafish. J Leukoc Biol. 2020;107:431–43.
pubmed: 31909502
doi: 10.1002/JLB.1A1119-223R
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203:253–310.
doi: 10.1002/aja.1002030302
pubmed: 8589427
Jin H, Li L, Xu J, Zhen F, Zhu L, Liu PP, et al. Runx1 regulates embryonic myeloid fate choice in zebrafish through a negative feedback loop inhibiting Pu.1 expression. Blood. 2012;119:5239–49.
pubmed: 22493295
pmcid: 3369614
doi: 10.1182/blood-2011-12-398362
Ellett F, Pase L, Hayman JW, Andrianopoulos A, Lieschke GJ. mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood. 2011;117:e49–56.
pubmed: 21084707
pmcid: 3056479
doi: 10.1182/blood-2010-10-314120
Renshaw SA, Loynes CA, Trushell DM, Elworthy S, Ingham PW, Whyte MK. A transgenic zebrafish model of neutrophilic inflammation. Blood. 2006;108:3976–8.
pubmed: 16926288
doi: 10.1182/blood-2006-05-024075
Page DM, Wittamer V, Bertrand JY, Lewis KL, Pratt DN, Delgado N, et al. An evolutionarily conserved program of B-cell development and activation in zebrafish. Blood. 2013;122:e1–11.
pubmed: 23861249
pmcid: 3750348
doi: 10.1182/blood-2012-12-471029
Xiao A, Wang Z, Hu Y, Wu Y, Luo Z, Yang Z, et al. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res. 2013;41:e141.
pubmed: 23748566
pmcid: 3737551
doi: 10.1093/nar/gkt464
Kawakami K, Shima A, Kawakami N. Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci USA. 2000;97:11403–8.
pubmed: 11027340
pmcid: 17212
doi: 10.1073/pnas.97.21.11403
Hinits Y, Osborn DP, Hughes SM. Differential requirements for myogenic regulatory factors distinguish medial and lateral somitic, cranial and fin muscle fibre populations. Development. 2009;136:403–14.
pubmed: 19141670
pmcid: 2687589
doi: 10.1242/dev.028019
Crowhurst MO, Layton JE, Lieschke GJ. Developmental biology of zebrafish myeloid cells. Int J Dev Biol. 2002;46:483–92.
pubmed: 12141435
Willett CE, Cherry JJ, Steiner LA. Characterization and expression of the recombination activating genes (rag1 and rag2) of zebrafish. Immunogenetics. 1997;45:394–404.
pubmed: 9089097
doi: 10.1007/s002510050221
Finckbeiner S, Ko PJ, Carrington B, Sood R, Gross K, Dolnick B, et al. Transient knockdown and overexpression reveal a developmental role for the zebrafish enosf1b gene. Cell Biosci. 2011;1:32.
pubmed: 21943404
pmcid: 3197473
doi: 10.1186/2045-3701-1-32
Link V, Shevchenko A, Heisenberg CP. Proteomics of early zebrafish embryos. BMC Dev Biol. 2006;6:1.
pubmed: 16412219
pmcid: 1363346
doi: 10.1186/1471-213X-6-1