Yolk sac-derived Pdcd11-positive cells modulate zebrafish microglia differentiation through the NF-κB-Tgfβ1 pathway.


Journal

Cell death and differentiation
ISSN: 1476-5403
Titre abrégé: Cell Death Differ
Pays: England
ID NLM: 9437445

Informations de publication

Date de publication:
01 2021
Historique:
received: 03 03 2020
accepted: 09 07 2020
revised: 07 07 2020
pubmed: 28 7 2020
medline: 21 12 2021
entrez: 26 7 2020
Statut: ppublish

Résumé

Microglia are the primary immune cells in the central nervous system, which plays a vital role in neuron development and neurodegenerative diseases. Microglial precursors in peripheral hematopoietic tissues colonize the central nervous system during early embryogenesis. However, how intrinsic and extrinsic signals integrate to regulate microglia's differentiation remains undefined. In this study, we identified the cerebral white matter hyperintensities susceptibility gene, programmed cell death protein 11 (PDCD11), as an essential factor regulating microglia differentiation. In zebrafish, pdcd11 deficiency prevents the differentiation of the precursors to mature brain microglia. Although, the inflammatory featured macrophage brain colonization is augmented. At 22 h post fertilization, the Pdcd11-positive cells on the yolk sac are distinct from macrophages and neutrophils. Mechanistically, PDCD11 exerts its physiological role by differentially regulating the functions of nuclear factor-kappa B family members, P65 and c-Rel, suppressing P65-mediated expression of inflammatory cytokines, such as tnfα, and enhancing the c-Rel-dependent appearance of tgfβ1. The present study provides novel insights in understanding microglia differentiation during zebrafish development.

Identifiants

pubmed: 32709934
doi: 10.1038/s41418-020-0591-3
pii: 10.1038/s41418-020-0591-3
pmc: PMC7853042
doi:

Substances chimiques

Cytokines 0
NF-kappa B 0
Transforming Growth Factor beta1 0
Zebrafish Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

170-183

Références

Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ. 2010;341:c3666.
pubmed: 20660506 pmcid: 2910261 doi: 10.1136/bmj.c3666
Fornage M, Chiang YA, O’Meara ES, Psaty BM, Reiner AP, Siscovick DS, et al. Biomarkers of inflammation and MRI-defined small vessel disease of the brain: the Cardiovascular Health Study. Stroke. 2008;39:1952–9.
pubmed: 18436879 pmcid: 2888487 doi: 10.1161/STROKEAHA.107.508135
Gouw AA, Seewann A, van der Flier WM, Barkhof F, Rozemuller AM, Scheltens P, et al. Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations. J Neurol Neurosurg Psychiatry. 2011;82:126–35.
pubmed: 20935330 doi: 10.1136/jnnp.2009.204685 pmcid: 20935330
Wright CB, Moon Y, Paik MC, Brown TR, Rabbani L, Yoshita M, et al. Inflammatory biomarkers of vascular risk as correlates of leukoariosis. Stroke. 2009;40:3466–71.
pubmed: 19696417 pmcid: 3114944 doi: 10.1161/STROKEAHA.109.559567
Fornage M, Debette S, Bis JC, Schmidt H, Ikram MA, Dufouil C, et al. Genome-wide association studies of cerebral white matter lesion burden: the CHARGE consortium. Ann Neurol. 2011;69:928–39.
pubmed: 21681796 pmcid: 3122147 doi: 10.1002/ana.22403
Hofer E, Cavalieri M, Bis JC, DeCarli C, Fornage M, Sigurdsson S, et al. White matter lesion progression: genome-wide search for genetic influences. Stroke. 2015;46:3048–57.
pubmed: 26451028 pmcid: 4749149 doi: 10.1161/STROKEAHA.115.009252
Verhaaren BF, Debette S, Bis JC, Smith JA, Ikram MK, Adams HH, et al. Multiethnic genome-wide association study of cerebral white matter hyperintensities on MRI. Circ Cardiovasc Genet. 2015;8:398–409.
pubmed: 25663218 pmcid: 4427240 doi: 10.1161/CIRCGENETICS.114.000858
Lee J, Hamanaka G, Lo EH, Arai K. Heterogeneity of microglia and their differential roles in white matter pathology. CNS Neurosci Ther. 2019;25:1290–8.
pubmed: 31733036 pmcid: 6887901 doi: 10.1111/cns.13266
Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states. Br J Pharmacol. 2016;173:649–65.
pubmed: 25800044 doi: 10.1111/bph.13139
Herbomel P, Thisse B, Thisse C. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev Biol. 2001;238:274–88.
pubmed: 11784010 doi: 10.1006/dbio.2001.0393
Mazzolini J, Le Clerc S, Morisse G, Coulonges C, Kuil LE, van Ham TJ, et al. Gene expression profiling reveals a conserved microglia signature in larval zebrafish. Glia. 2020;68:298–315.
pubmed: 31508850 doi: 10.1002/glia.23717
Kuil LE, Oosterhof N, Geurts SN, van der Linde HC, Meijering E, van Ham TJ. Reverse genetic screen reveals that Il34 facilitates yolk sac macrophage distribution and seeding of the brain. Dis Model Mech. 2019;12:dmm037762.
pubmed: 30765415 pmcid: 6451432 doi: 10.1242/dmm.037762
Wu S, Xue R, Hassan S, Nguyen TML, Wang T, Pan H, et al. Il34-Csf1r pathway regulates the migration and colonization of microglial precursors. Dev Cell. 2018;46:552–563e554.
pubmed: 30205037 doi: 10.1016/j.devcel.2018.08.005
Travis MA, Sheppard D. TGF-beta activation and function in immunity. Annu Rev Immunol. 2014;32:51–82.
pubmed: 24313777 doi: 10.1146/annurev-immunol-032713-120257
Lund H, Pieber M, Parsa R, Grommisch D, Ewing E, Kular L, et al. Fatal demyelinating disease is induced by monocyte-derived macrophages in the absence of TGF-beta signaling. Nat Immunol. 2018;19:1–7.
pubmed: 29662171 pmcid: 7309278 doi: 10.1038/s41590-018-0091-5
Zoller T, Schneider A, Kleimeyer C, Masuda T, Potru PS, Pfeifer D, et al. Silencing of TGFbeta signalling in microglia results in impaired homeostasis. Nat Commun. 2018;9:4011.
pubmed: 30275444 pmcid: 6167353 doi: 10.1038/s41467-018-06224-y
Derenzini M, Montanaro L, Trere D. Ribosome biogenesis and cancer. Acta Histochem. 2017;119:190–7.
pubmed: 28168996 doi: 10.1016/j.acthis.2017.01.009 pmcid: 28168996
Mills EW, Green R. Ribosomopathies: There’s strength in numbers. Science. 2017;358:eaan2755.
pubmed: 29097519 doi: 10.1126/science.aan2755
Morcelle C, Menoyo S, Moron-Duran FD, Tauler A, Kozma SC, Thomas G, et al. Oncogenic MYC induces the impaired ribosome biogenesis checkpoint and stabilizes p53 independent of increased ribosome content. Cancer Res. 2019;79:4348–59.
pubmed: 31292158 doi: 10.1158/0008-5472.CAN-18-2718 pmcid: 31292158
Berghmans S, Murphey RD, Wienholds E, Neuberg D, Kutok JL, Fletcher CD, et al. tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc Natl Acad Sci USA. 2005;102:407–12.
pubmed: 15630097 pmcid: 544293 doi: 10.1073/pnas.0406252102
Xu J, Wang T, Wu Y, Jin W, Wen Z. Microglia colonization of developing zebrafish midbrain is promoted by apoptotic neuron and lysophosphatidylcholine. Dev Cell. 2016;38:214–22.
pubmed: 27424497 doi: 10.1016/j.devcel.2016.06.018
Oosterhof N, Kuil LE, van der Linde HC, Burm SM, Berdowski W, van Ijcken WFJ, et al. Colony-stimulating factor 1 receptor (CSF1R) regulates microglia density and distribution, but not microglia differentiation in vivo. Cell Rep. 2018;24:1203–1217e1206.
pubmed: 30067976 doi: 10.1016/j.celrep.2018.06.113
Nguyen-Chi M, Laplace-Builhe B, Travnickova J, Luz-Crawford P, Tejedor G, Phan QT, et al. Identification of polarized macrophage subsets in zebrafish. Elife. 2015;4:e07288.
pubmed: 26154973 pmcid: 4521581 doi: 10.7554/eLife.07288
Lu XJ, Chen Q, Rong YJ, Chen F, Chen J. CXCR3.1 and CXCR3.2 differentially contribute to macrophage polarization in teleost fish. J Immunol. 2017;198:4692–706.
pubmed: 28500070 doi: 10.4049/jimmunol.1700101
Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, et al. Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci. 2014;17:131–43.
pubmed: 24316888 doi: 10.1038/nn.3599
Buttgereit A, Lelios I, Yu X, Vrohlings M, Krakoski NR, Gautier EL, et al. Sall1 is a transcriptional regulator defining microglia identity and function. Nat Immunol. 2016;17:1397–406.
pubmed: 27776109 doi: 10.1038/ni.3585
Sweet T, Khalili K, Sawaya BE, Amini S. Identification of a novel protein from glial cells based on its ability to interact with NF-kappaB subunits. J Cell Biochem. 2003;90:884–91.
pubmed: 14624448 doi: 10.1002/jcb.10701
Sweet T, Sawaya BE, Khalili K, Amini S. Interplay between NFBP and NF-kappaB modulates tat activation of the LTR. J Cell Physiol. 2005;204:375–80.
pubmed: 15887232 doi: 10.1002/jcp.20419
Dyson HJ, Komives EA. Role of disorder in IkappaB-NFkappaB interaction. IUBMB Life. 2012;64:499–505.
pubmed: 22573609 pmcid: 3575514 doi: 10.1002/iub.1044
Stark LA, Dunlop MG. Nucleolar sequestration of RelA (p65) regulates NF-kappaB-driven transcription and apoptosis. Mol Cell Biol. 2005;25:5985–6004.
pubmed: 15988014 pmcid: 1168799 doi: 10.1128/MCB.25.14.5985-6004.2005
Daroczi B, Kari G, Ren Q, Dicker AP, Rodeck U. Nuclear factor kappaB inhibitors alleviate and the proteasome inhibitor PS-341 exacerbates radiation toxicity in zebrafish embryos. Mol Cancer Ther. 2009;8:2625–34.
pubmed: 19723885 pmcid: 2846641 doi: 10.1158/1535-7163.MCT-09-0198
Wang T, Yan B, Lou L, Lin X, Yu T, Wu S, et al. Nlrc3-like is required for microglia maintenance in zebrafish. J Genet Genomics. 2019;46:291–9.
pubmed: 31278008 doi: 10.1016/j.jgg.2019.06.002 pmcid: 31278008
Don EK, Formella I, Badrock AP, Hall TE, Morsch M, Hortle E, et al. A Tol2 gateway-compatible toolbox for the study of the nervous system and neurodegenerative disease. Zebrafish. 2017;14:69–72.
pubmed: 27631880 doi: 10.1089/zeb.2016.1321 pmcid: 27631880
Harvie EA, Green JM, Neely MN, Huttenlocher A. Innate immune response to Streptococcus iniae infection in zebrafish larvae. Infect Immun. 2013;81:110–21.
pubmed: 23090960 pmcid: 3536132 doi: 10.1128/IAI.00642-12
Kanther M, Sun X, Muhlbauer M, Mackey LC, Flynn EJ 3rd, Bagnat M, et al. Microbial colonization induces dynamic temporal and spatial patterns of NF-kappaB activation in the zebrafish digestive tract. Gastroenterology. 2011;141:197–207.
pubmed: 21439961 doi: 10.1053/j.gastro.2011.03.042 pmcid: 21439961
Baeuerle PA, Henkel T. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol. 1994;12:141–79.
pubmed: 8011280 doi: 10.1146/annurev.iy.12.040194.001041 pmcid: 8011280
Barnes PJ, Karin M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N. Engl J Med. 1997;336:1066–71.
pubmed: 9091804 doi: 10.1056/NEJM199704103361506 pmcid: 9091804
Grinberg-Bleyer Y, Oh H, Desrichard A, Bhatt DM, Caron R, Chan TA, et al. NF-kappaB c-Rel is crucial for the regulatory T cell immune checkpoint in cancer. Cell. 2017;170:1096–1108e1013.
pubmed: 28886380 pmcid: 5633372 doi: 10.1016/j.cell.2017.08.004
De Siervi A, De Luca P, Moiola C, Gueron G, Tongbai R, Chandramouli GV, et al. Identification of new Rel/NFkappaB regulatory networks by focused genome location analysis. Cell Cycle. 2009;8:2093–100.
pubmed: 19502793 doi: 10.4161/cc.8.13.8926 pmcid: 19502793
Hase Y, Horsburgh K, Ihara M, Kalaria RN. White matter degeneration in vascular and other ageing-related dementias. J Neurochem. 2018;144:617–33.
pubmed: 29210074 doi: 10.1111/jnc.14271
Skripuletz T, Hackstette D, Bauer K, Gudi V, Pul R, Voss E, et al. Astrocytes regulate myelin clearance through recruitment of microglia during cuprizone-induced demyelination. Brain. 2013;136:147–67.
pubmed: 23266461 doi: 10.1093/brain/aws262 pmcid: 23266461
Lampron A, Larochelle A, Laflamme N, Prefontaine P, Plante MM, Sanchez MG, et al. Inefficient clearance of myelin debris by microglia impairs remyelinating processes. J Exp Med. 2015;212:481–95.
pubmed: 25779633 pmcid: 4387282 doi: 10.1084/jem.20141656
Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330:841–5.
pubmed: 20966214 pmcid: 3719181 doi: 10.1126/science.1194637
Ferrero G, Mahony CB, Dupuis E, Yvernogeau L, Di Ruggiero E, Miserocchi M, et al. Embryonic Microglia derive from primitive macrophages and are replaced by cmyb-dependent definitive microglia in zebrafish. Cell Rep. 2018;24:130–41.
pubmed: 29972775 doi: 10.1016/j.celrep.2018.05.066
Robertson IB, Rifkin DB. Regulation of the bioavailability of TGF-beta and TGF-beta-related proteins. Cold Spring Harb Perspect Biol. 2016;8:a021907.
pubmed: 27252363 pmcid: 4888822 doi: 10.1101/cshperspect.a021907
Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature. 1992;359:693–9.
pubmed: 1436033 pmcid: 3889166 doi: 10.1038/359693a0
Chen X, Kandasamy K, Srivastava RK. Differential roles of RelA (p65) and c-Rel subunits of nuclear factor kappa B in tumor necrosis factor-related apoptosis-inducing ligand signaling. Cancer Res. 2003;63:1059–66.
pubmed: 12615723 pmcid: 12615723
Pizzi M, Goffi F, Boroni F, Benarese M, Perkins SE, Liou HC, et al. Opposing roles for NF-kappa B/Rel factors p65 and c-Rel in the modulation of neuron survival elicited by glutamate and interleukin-1beta. J Biol Chem. 2002;277:20717–23.
pubmed: 11912207 doi: 10.1074/jbc.M201014200
Pohl T, Gugasyan R, Grumont RJ, Strasser A, Metcalf D, Tarlinton D, et al. The combined absence of NF-kappa B1 and c-Rel reveals that overlapping roles for these transcription factors in the B cell lineage are restricted to the activation and function of mature cells. Proc Natl Acad Sci USA. 2002;99:4514–9.
pubmed: 11930006 pmcid: 123679 doi: 10.1073/pnas.072071599
Tanabe S, Yamashita T. B-1a lymphocytes promote oligodendrogenesis during brain development. Nat Neurosci. 2018;21:506–16.
pubmed: 29507409 doi: 10.1038/s41593-018-0106-4
Ferrero G, Gomez E, Lyer S, Rovira M, Miserocchi M, Langenau DM, et al. The macrophage-expressed gene (mpeg) 1 identifies a subpopulation of B cells in the adult zebrafish. J Leukoc Biol. 2020;107:431–43.
pubmed: 31909502 doi: 10.1002/JLB.1A1119-223R
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203:253–310.
doi: 10.1002/aja.1002030302 pubmed: 8589427
Jin H, Li L, Xu J, Zhen F, Zhu L, Liu PP, et al. Runx1 regulates embryonic myeloid fate choice in zebrafish through a negative feedback loop inhibiting Pu.1 expression. Blood. 2012;119:5239–49.
pubmed: 22493295 pmcid: 3369614 doi: 10.1182/blood-2011-12-398362
Ellett F, Pase L, Hayman JW, Andrianopoulos A, Lieschke GJ. mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood. 2011;117:e49–56.
pubmed: 21084707 pmcid: 3056479 doi: 10.1182/blood-2010-10-314120
Renshaw SA, Loynes CA, Trushell DM, Elworthy S, Ingham PW, Whyte MK. A transgenic zebrafish model of neutrophilic inflammation. Blood. 2006;108:3976–8.
pubmed: 16926288 doi: 10.1182/blood-2006-05-024075
Page DM, Wittamer V, Bertrand JY, Lewis KL, Pratt DN, Delgado N, et al. An evolutionarily conserved program of B-cell development and activation in zebrafish. Blood. 2013;122:e1–11.
pubmed: 23861249 pmcid: 3750348 doi: 10.1182/blood-2012-12-471029
Xiao A, Wang Z, Hu Y, Wu Y, Luo Z, Yang Z, et al. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res. 2013;41:e141.
pubmed: 23748566 pmcid: 3737551 doi: 10.1093/nar/gkt464
Kawakami K, Shima A, Kawakami N. Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci USA. 2000;97:11403–8.
pubmed: 11027340 pmcid: 17212 doi: 10.1073/pnas.97.21.11403
Hinits Y, Osborn DP, Hughes SM. Differential requirements for myogenic regulatory factors distinguish medial and lateral somitic, cranial and fin muscle fibre populations. Development. 2009;136:403–14.
pubmed: 19141670 pmcid: 2687589 doi: 10.1242/dev.028019
Crowhurst MO, Layton JE, Lieschke GJ. Developmental biology of zebrafish myeloid cells. Int J Dev Biol. 2002;46:483–92.
pubmed: 12141435
Willett CE, Cherry JJ, Steiner LA. Characterization and expression of the recombination activating genes (rag1 and rag2) of zebrafish. Immunogenetics. 1997;45:394–404.
pubmed: 9089097 doi: 10.1007/s002510050221
Finckbeiner S, Ko PJ, Carrington B, Sood R, Gross K, Dolnick B, et al. Transient knockdown and overexpression reveal a developmental role for the zebrafish enosf1b gene. Cell Biosci. 2011;1:32.
pubmed: 21943404 pmcid: 3197473 doi: 10.1186/2045-3701-1-32
Link V, Shevchenko A, Heisenberg CP. Proteomics of early zebrafish embryos. BMC Dev Biol. 2006;6:1.
pubmed: 16412219 pmcid: 1363346 doi: 10.1186/1471-213X-6-1

Auteurs

Ruimeng Yang (R)

CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, PR China.
The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, PR China.

Ming Zhan (M)

The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, PR China.
Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, PR China.

Miaomiao Guo (M)

The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, PR China.

Hao Yuan (H)

CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, PR China.

Yiqin Wang (Y)

CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, PR China.

Yiyue Zhang (Y)

Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, 510006, Guangzhou, PR China.

Wenqing Zhang (W)

Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, 510006, Guangzhou, PR China.

Saijuan Chen (S)

CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, PR China.

Hugues de The (H)

CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, PR China.
Université de Paris 7/INSERM/CNRS UMR 944/7212, Equipe Labellisée No. 11 Ligue Nationale Contre le Cancer, Hôpital St. Louis, Paris, France.
Chaire d'Oncologie Cellulaire et Molecular, College de France, PSL Universite, Paris, France.

Zhu Chen (Z)

CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, PR China.

Jun Zhou (J)

CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, PR China. junjun_j@yahoo.com.

Jun Zhu (J)

CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, PR China. zhuj1966@yahoo.com.
Université de Paris 7/INSERM/CNRS UMR 944/7212, Equipe Labellisée No. 11 Ligue Nationale Contre le Cancer, Hôpital St. Louis, Paris, France. zhuj1966@yahoo.com.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
C-Reactive Protein Humans Biomarkers Inflammation
Humans Immune Checkpoint Inhibitors Lung Neoplasms Prognosis Inflammation

Classifications MeSH