A total closed chest sheep model of cardiogenic shock by percutaneous intracoronary ethanol injection.
Animals
Arterial Pressure
/ drug effects
Cardiac Output
/ drug effects
Coronary Circulation
/ drug effects
Coronary Vessels
/ drug effects
Disease Models, Animal
Ethanol
/ administration & dosage
Female
Humans
Injections, Intra-Arterial
/ methods
Reproducibility of Results
Sheep
Shock, Cardiogenic
/ chemically induced
Survival Rate
Ventricular Function, Left
/ drug effects
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
24 07 2020
24 07 2020
Historique:
received:
29
04
2020
accepted:
26
06
2020
entrez:
26
7
2020
pubmed:
28
7
2020
medline:
22
12
2020
Statut:
epublish
Résumé
To develop a reproducible and stable closed chest model of ischemic cardiogenic shock in sheep, with high survival rate and potential insight into human pathology. We established a protocol for multi-step myocardial alcoholisation of the left anterior descending coronary artery by percutaneous ethanol injection. A thorough hemodynamic assessment was obtained by invasive and non-invasive monitoring devices. Repeated blood samples were obtained to determine haemoglobin and alcohol concentration, electrolytes, blood gas parameters and cardiac troponin I. After sacrifice, tissue was excised for quantification of infarction and histology. Cardiogenic shock was characterized by a significant decrease in mean arterial pressure (- 33%), cardiac output (- 29%), dP/dt
Identifiants
pubmed: 32709984
doi: 10.1038/s41598-020-68571-5
pii: 10.1038/s41598-020-68571-5
pmc: PMC7381645
doi:
Substances chimiques
Ethanol
3K9958V90M
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
12417Références
Harjola, V. P. et al. Clinical picture and risk prediction of short-term mortality in cardiogenic shock. Eur. J. Heart Fail. 17, 501–509. https://doi.org/10.1002/ejhf.260 (2015).
doi: 10.1002/ejhf.260
pubmed: 25820680
Reffelmann, T. et al. A novel minimal-invasive model of chronic myocardial infarction in swine. Coron. Artery Dis. 15, 7–12 (2004).
doi: 10.1097/00019501-200402000-00002
Weil, B. R., Konecny, F., Suzuki, G., Iyer, V. & Canty, J. M. Jr. Comparative hemodynamic effects of contemporary percutaneous mechanical circulatory support devices in a porcine model of acute myocardial infarction. JACC Cardiovasc. Interv. 9, 2292–2303. https://doi.org/10.1016/j.jcin.2016.08.037 (2016).
doi: 10.1016/j.jcin.2016.08.037
pubmed: 28026740
pmcid: 5687065
Meyns, B., Stolinski, J., Leunens, V., Verbeken, E. & Flameng, W. Left ventricular support by catheter-mounted axial flow pump reduces infarct size. J. Am. Coll. Cardiol. 41, 1087–1095 (2003).
doi: 10.1016/S0735-1097(03)00084-6
Ostadal, P. et al. Novel porcine model of acute severe cardiogenic shock developed by upper-body hypoxia. Physiol. Res. 65, 711–715 (2016).
doi: 10.33549/physiolres.933294
Simonsen, C., Magnusdottir, S. O., Andreasen, J. J., Rohde, M. C. & Kjaergaard, B. ECMO improves survival following cardiogenic shock due to carbon monoxide poisoning: an experimental porcine model. Scand. J. Trauma Resusc. Emerg. Med. 26, 103. https://doi.org/10.1186/s13049-018-0570-6 (2018).
doi: 10.1186/s13049-018-0570-6
pubmed: 30466470
pmcid: 6251161
Moller-Helgestad, O. K. et al. Impella CP or VA-ECMO in profound cardiogenic shock: left ventricular unloading and organ perfusion in a large animal model. EuroIntervention 14, e1585–e1592. https://doi.org/10.4244/EIJ-D-18-00684 (2019).
doi: 10.4244/EIJ-D-18-00684
pubmed: 30418160
Ostadal, P. et al. Electrocardiogram-synchronized pulsatile extracorporeal life support preserves left ventricular function and coronary flow in a porcine model of cardiogenic shock. PLoS ONE 13, e0196321. https://doi.org/10.1371/journal.pone.0196321 (2018).
doi: 10.1371/journal.pone.0196321
pubmed: 29689088
pmcid: 5915277
Vanhuyse, F. et al. Moderate hypothermia improves cardiac and vascular function in a pig model of ischemic cardiogenic shock treated with veno-arterial ECMO. Shock 47, 236–241. https://doi.org/10.1097/SHK.0000000000000712 (2017).
doi: 10.1097/SHK.0000000000000712
pubmed: 27488087
Kapur, N. K. et al. Mechanically unloading the left ventricle before coronary reperfusion reduces left ventricular wall stress and myocardial infarct size. Circulation 128, 328–336. https://doi.org/10.1161/CIRCULATIONAHA.112.000029 (2013).
doi: 10.1161/CIRCULATIONAHA.112.000029
Crisostomo, V. et al. Development of a closed chest model of chronic myocardial infarction in Swine: magnetic resonance imaging and pathological evaluation. ISRN Cardiol. 2013, 781762. https://doi.org/10.1155/2013/781762 (2013).
doi: 10.1155/2013/781762
pubmed: 24282645
pmcid: 3825272
Stenberg, T. A. et al. The acute phase of experimental cardiogenic shock is counteracted by microcirculatory and mitochondrial adaptations. PLoS ONE 9, e105213. https://doi.org/10.1371/journal.pone.0105213 (2014).
doi: 10.1371/journal.pone.0105213
pubmed: 25188581
pmcid: 4154851
Isorni, M. A. et al. Comparative analysis of methods to induce myocardial infarction in a closed-chest rabbit model. Biomed. Res. Int. 2015, 893051. https://doi.org/10.1155/2015/893051 (2015).
doi: 10.1155/2015/893051
pubmed: 26504843
pmcid: 4609376
Ikram, H. et al. An ovine model of acute myocardial infarction and chronic left ventricular dysfunction. Angiology 48, 679–688. https://doi.org/10.1177/000331979704800803 (1997).
doi: 10.1177/000331979704800803
pubmed: 9269137
Maxwell, M. P., Hearse, D. J. & Yellon, D. M. Species variation in the coronary collateral circulation during regional myocardial ischaemia: a critical determinant of the rate of evolution and extent of myocardial infarction. Cardiovasc. Res. 21, 737–746. https://doi.org/10.1093/cvr/21.10.737 (1987).
doi: 10.1093/cvr/21.10.737
pubmed: 3440266
Bertho, E. & Gagnon, G. A comparative study in three dimension of the blood supply of the normal interventricular septum in human, canine, bovine, procine, ovine and equine. Dis. Chest 46, 251–262 (1964).
doi: 10.1378/chest.46.3.251
Terp, K. et al. The hemodynamic impact of diffuse myocardial ischemic lesions: an animal experimental model based on intracoronary microembolization. Heart Vessels 13, 132–141 (1998).
doi: 10.1007/BF01747830
Kim, W. et al. A porcine model of ischemic heart failure produced by intracoronary injection of ethyl alcohol. Heart Vessels 26, 342–348. https://doi.org/10.1007/s00380-010-0022-3 (2011).
doi: 10.1007/s00380-010-0022-3
pubmed: 20963597
Markovitz, L. J. et al. Large animal model of left ventricular aneurysm. Ann. Thorac. Surg. 48, 838–845 (1989).
doi: 10.1016/0003-4975(89)90682-6
Millner, R. W., Mann, J. M., Pearson, I. & Pepper, J. R. Experimental model of left ventricular failure. Ann. Thorac. Surg. 52, 78–83 (1991).
doi: 10.1016/0003-4975(91)91424-T
Heusch, G., Schulz, R., Baumgart, D., Haude, M. & Erbel, R. Coronary microembolization. Prog. Cardiovasc. Dis. 44, 217–230. https://doi.org/10.1053/pcad.2001.26968 (2001).
doi: 10.1053/pcad.2001.26968
pubmed: 11727279
Smiseth, O. A., Lindal, S., Mjos, O. D., Vik-Mo, H. & Jorgensen, L. Progression of myocardial damage following coronary microembolization in dogs. Acta Pathol. Microbiol. Immunol. Scand. A 91, 115–124 (1983).
pubmed: 6846015
Bush, L. R. & Shebuski, R. J. In vivo models of arterial thrombosis and thrombolysis. FASEB J. 4, 3087–3098. https://doi.org/10.1096/fasebj.4.13.2210155 (1990).
doi: 10.1096/fasebj.4.13.2210155
pubmed: 2210155
Garner, D., Ginzton, L. E., Jagels, G. & Laks, M. M. A new technique for producing myocardial infarction using coronary artery balloon occlusion. Cardiovasc. Res. 22, 42–46. https://doi.org/10.1093/cvr/22.1.42 (1988).
doi: 10.1093/cvr/22.1.42
pubmed: 3167927
Mitsos, S., Katsanos, K., Dougeni, E., Koletsis, E. N. & Dougenis, D. A critical appraisal of open- and closed-chest models of experimental myocardial ischemia. Lab. Anim. 38, 167–177. https://doi.org/10.1038/laban0509-167 (2009).
doi: 10.1038/laban0509-167
Gotberg, M. et al. Mild hypothermia reduces acute mortality and improves hemodynamic outcome in a cardiogenic shock pig model. Resuscitation 81, 1190–1196. https://doi.org/10.1016/j.resuscitation.2010.04.033 (2010).
doi: 10.1016/j.resuscitation.2010.04.033
pubmed: 20627520
Lindsey, M. L. et al. Guidelines for experimental models of myocardial ischemia and infarction. Am. J. Physiol. Heart Circ. Physiol. 314, H812–H838. https://doi.org/10.1152/ajpheart.00335.2017 (2018).
doi: 10.1152/ajpheart.00335.2017
pubmed: 29351451
pmcid: 5966768
Wouters, P. F. et al. Left ventricular assistance using a catheter-mounted coaxial flow pump (Hemopump) in a canine model of regional myocardial ischaemia. Eur. Heart J. 14, 567–575. https://doi.org/10.1093/eurheartj/14.4.567 (1993).
doi: 10.1093/eurheartj/14.4.567
pubmed: 8472723
Al Rasheed, N. M., Al Sayed, M. I., Al Zuhair, H. H., Al Obaid, A. R. & Fatani, A. J. Effects of two newly synthesized analogues of lidocaine on rat arterial blood pressure and heart rate. Pharmacol. Res. 43, 313–319. https://doi.org/10.1006/phrs.2000.0783 (2001).
doi: 10.1006/phrs.2000.0783
pubmed: 11352535
Freye, E., Schmidhammer, H. & Latasch, L. 14-methoxymetopon, a potent opioid, induces no respiratory depression, less sedation, and less bradycardia than sufentanil in the dog. Anesth. Analg. 90, 1359–1364. https://doi.org/10.1097/00000539-200006000-00018 (2000).
doi: 10.1097/00000539-200006000-00018
pubmed: 10825321
Michelin, M. T., Cheucle-Beaughard, M. & Duchene-Marullaz, P. Comparative effects of amiodarone, bepridil and perhexiline on coronary venous flow and several cardiovascular parameters. Arch. Int. Pharmacodyn. Ther. 245, 236–248 (1980).
pubmed: 6967717
Varga, K. & Kunos, G. Ethanol inhibition of baroreflex bradycardia: role of brainstem GABA receptors. Br. J. Pharmacol. 101, 773–775. https://doi.org/10.1111/j.1476-5381.1990.tb14155.x (1990).
doi: 10.1111/j.1476-5381.1990.tb14155.x
pubmed: 1964817
pmcid: 1917857
Feola, M., Haiderer, O. & Kennedy, J. H. Experimental graded “pump failure” of the left ventricle. J. Surg. Res. 11, 325–341. https://doi.org/10.1016/0022-4804(71)90110-7 (1971).
doi: 10.1016/0022-4804(71)90110-7
pubmed: 5158803
Udesen, N. L. J. et al. Impact of concomitant vasoactive treatment and mechanical left ventricular unloading in a porcine model of profound cardiogenic shock. Crit. Care. 24, 95. https://doi.org/10.1186/s13054-020-2816-8 (2020).
doi: 10.1186/s13054-020-2816-8
pubmed: 32188462
pmcid: 7079533
Inoue, H., Waller, B. F. & Zipes, D. P. Intracoronary ethyl alcohol or phenol injection ablates aconitine-induced ventricular tachycardia in dogs. J. Am. Coll. Cardiol. 10, 1342–1349 (1987).
doi: 10.1016/S0735-1097(87)80139-0
Maron, B. J. Role of alcohol septal ablation in treatment of obstructive hypertrophic cardiomyopathy. Lancet 355, 425–426. https://doi.org/10.1016/S0140-6736(00)82005-X (2000).
doi: 10.1016/S0140-6736(00)82005-X
pubmed: 10841119
Haines, D. E., Whayne, J. G. & DiMarco, J. P. Intracoronary ethanol ablation in swine: effects of ethanol concentration on lesion formation and response to programmed ventricular stimulation. J. Cardiovasc. Electrophysiol. 5, 422–431 (1994).
doi: 10.1111/j.1540-8167.1994.tb01181.x
Joudinaud, T. M. et al. An experimental method for the percutaneous induction of a posterolateral infarct and functional ischemic mitral regurgitation. J. Heart Valve Dis. 14, 460–466 (2005).
pubmed: 16116871
Ellman, B. A., Green, C. E., Eigenbrodt, E., Garriott, J. C. & Curry, T. S. Renal infarction with absolute ethanol. Invest. Radiol. 15, 318–322 (1980).
doi: 10.1097/00004424-198007000-00008
Reimer, K. A. & Jennings, R. B. The, “wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab. Invest. 40, 633–644 (1979).
pubmed: 449273
Weismuller, P. et al. Chemical ablation by subendocardial injection of ethanol via catheter–preliminary results in the pig heart. Eur. Heart J. 12, 1234–1239. https://doi.org/10.1093/eurheartj/12.11.1234 (1991).
doi: 10.1093/eurheartj/12.11.1234
pubmed: 1782955
Jennings, R. B., Murry, C. E., Steenbergen, C. Jr. & Reimer, K. A. Development of cell injury in sustained acute ischemia. Circulation 82, 2–12 (1990).
Sakamoto, H. et al. Effect of reperfusion on left ventricular regional remodeling strains after myocardial infarction. Ann. Thorac. Surg. 84, 1528–1536. https://doi.org/10.1016/j.athoracsur.2007.05.060 (2007).
doi: 10.1016/j.athoracsur.2007.05.060
pubmed: 17954057
Anversa, P. et al. Ischemic cardiomyopathy: myocyte cell loss, myocyte cellular hypertrophy, and myocyte cellular hyperplasia. Ann. N. Y. Acad. Sci. 752, 47–64. https://doi.org/10.1111/j.1749-6632.1995.tb17405.x (1995).
doi: 10.1111/j.1749-6632.1995.tb17405.x
pubmed: 7755292
Frangogiannis, N. G. Pathophysiology of myocardial infarction. Compr. Physiol. 5, 1841–1875. https://doi.org/10.1002/cphy.c150006 (2015).
doi: 10.1002/cphy.c150006
pubmed: 26426469
Bolli, R. Why myocardial stunning is clinically important. Basic Res. Cardiol. 93, 169–172 (1998).
doi: 10.1007/s003950050083
Aymong, E. D., Ramanathan, K. & Buller, C. E. Pathophysiology of cardiogenic shock complicating acute myocardial infarction. Med. Clin. N. Am. 91, 701–712. https://doi.org/10.1016/j.mcna.2007.03.006 (2007).
doi: 10.1016/j.mcna.2007.03.006
pubmed: 17640543
Boor, P. J. & Reynolds, E. S. Myocardial infarct size: clinicopathologic agreement and discordance. Hum. Pathol. 8, 685–695 (1977).
doi: 10.1016/S0046-8177(77)80097-X
Page, D. L., Caulfield, J. B., Kastor, J. A., DeSanctis, R. W. & Sanders, C. A. Myocardial changes associated with cardiogenic shock. N. Engl. J. Med. 285, 133–137. https://doi.org/10.1056/NEJM197107152850301 (1971).
doi: 10.1056/NEJM197107152850301
pubmed: 5087702
Kaul, S. et al. The importance of defining left ventricular area at risk in vivo during acute myocardial infarction: an experimental evaluation with myocardial contrast two-dimensional echocardiography. Circulation 75, 1249–1260 (1987).
doi: 10.1161/01.CIR.75.6.1249
Alpert, J. S. & Thygesen, K. A new global definition of myocardial infarction for the 21st century. Pol. Arch. Med. Wewn 117, 485–486 (2007).
pubmed: 18363245
Gharacholou, S. M. et al. Implications and reasons for the lack of use of reperfusion therapy in patients with ST-segment elevation myocardial infarction: findings from the CRUSADE initiative. Am. Heart J. 159, 757–763. https://doi.org/10.1016/j.ahj.2010.02.009 (2010).
doi: 10.1016/j.ahj.2010.02.009
pubmed: 20435183