A total closed chest sheep model of cardiogenic shock by percutaneous intracoronary ethanol injection.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
24 07 2020
Historique:
received: 29 04 2020
accepted: 26 06 2020
entrez: 26 7 2020
pubmed: 28 7 2020
medline: 22 12 2020
Statut: epublish

Résumé

To develop a reproducible and stable closed chest model of ischemic cardiogenic shock in sheep, with high survival rate and potential insight into human pathology. We established a protocol for multi-step myocardial alcoholisation of the left anterior descending coronary artery by percutaneous ethanol injection. A thorough hemodynamic assessment was obtained by invasive and non-invasive monitoring devices. Repeated blood samples were obtained to determine haemoglobin and alcohol concentration, electrolytes, blood gas parameters and cardiac troponin I. After sacrifice, tissue was excised for quantification of infarction and histology. Cardiogenic shock was characterized by a significant decrease in mean arterial pressure (- 33%), cardiac output (- 29%), dP/dt

Identifiants

pubmed: 32709984
doi: 10.1038/s41598-020-68571-5
pii: 10.1038/s41598-020-68571-5
pmc: PMC7381645
doi:

Substances chimiques

Ethanol 3K9958V90M

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

12417

Références

Harjola, V. P. et al. Clinical picture and risk prediction of short-term mortality in cardiogenic shock. Eur. J. Heart Fail. 17, 501–509. https://doi.org/10.1002/ejhf.260 (2015).
doi: 10.1002/ejhf.260 pubmed: 25820680
Reffelmann, T. et al. A novel minimal-invasive model of chronic myocardial infarction in swine. Coron. Artery Dis. 15, 7–12 (2004).
doi: 10.1097/00019501-200402000-00002
Weil, B. R., Konecny, F., Suzuki, G., Iyer, V. & Canty, J. M. Jr. Comparative hemodynamic effects of contemporary percutaneous mechanical circulatory support devices in a porcine model of acute myocardial infarction. JACC Cardiovasc. Interv. 9, 2292–2303. https://doi.org/10.1016/j.jcin.2016.08.037 (2016).
doi: 10.1016/j.jcin.2016.08.037 pubmed: 28026740 pmcid: 5687065
Meyns, B., Stolinski, J., Leunens, V., Verbeken, E. & Flameng, W. Left ventricular support by catheter-mounted axial flow pump reduces infarct size. J. Am. Coll. Cardiol. 41, 1087–1095 (2003).
doi: 10.1016/S0735-1097(03)00084-6
Ostadal, P. et al. Novel porcine model of acute severe cardiogenic shock developed by upper-body hypoxia. Physiol. Res. 65, 711–715 (2016).
doi: 10.33549/physiolres.933294
Simonsen, C., Magnusdottir, S. O., Andreasen, J. J., Rohde, M. C. & Kjaergaard, B. ECMO improves survival following cardiogenic shock due to carbon monoxide poisoning: an experimental porcine model. Scand. J. Trauma Resusc. Emerg. Med. 26, 103. https://doi.org/10.1186/s13049-018-0570-6 (2018).
doi: 10.1186/s13049-018-0570-6 pubmed: 30466470 pmcid: 6251161
Moller-Helgestad, O. K. et al. Impella CP or VA-ECMO in profound cardiogenic shock: left ventricular unloading and organ perfusion in a large animal model. EuroIntervention 14, e1585–e1592. https://doi.org/10.4244/EIJ-D-18-00684 (2019).
doi: 10.4244/EIJ-D-18-00684 pubmed: 30418160
Ostadal, P. et al. Electrocardiogram-synchronized pulsatile extracorporeal life support preserves left ventricular function and coronary flow in a porcine model of cardiogenic shock. PLoS ONE 13, e0196321. https://doi.org/10.1371/journal.pone.0196321 (2018).
doi: 10.1371/journal.pone.0196321 pubmed: 29689088 pmcid: 5915277
Vanhuyse, F. et al. Moderate hypothermia improves cardiac and vascular function in a pig model of ischemic cardiogenic shock treated with veno-arterial ECMO. Shock 47, 236–241. https://doi.org/10.1097/SHK.0000000000000712 (2017).
doi: 10.1097/SHK.0000000000000712 pubmed: 27488087
Kapur, N. K. et al. Mechanically unloading the left ventricle before coronary reperfusion reduces left ventricular wall stress and myocardial infarct size. Circulation 128, 328–336. https://doi.org/10.1161/CIRCULATIONAHA.112.000029 (2013).
doi: 10.1161/CIRCULATIONAHA.112.000029
Crisostomo, V. et al. Development of a closed chest model of chronic myocardial infarction in Swine: magnetic resonance imaging and pathological evaluation. ISRN Cardiol. 2013, 781762. https://doi.org/10.1155/2013/781762 (2013).
doi: 10.1155/2013/781762 pubmed: 24282645 pmcid: 3825272
Stenberg, T. A. et al. The acute phase of experimental cardiogenic shock is counteracted by microcirculatory and mitochondrial adaptations. PLoS ONE 9, e105213. https://doi.org/10.1371/journal.pone.0105213 (2014).
doi: 10.1371/journal.pone.0105213 pubmed: 25188581 pmcid: 4154851
Isorni, M. A. et al. Comparative analysis of methods to induce myocardial infarction in a closed-chest rabbit model. Biomed. Res. Int. 2015, 893051. https://doi.org/10.1155/2015/893051 (2015).
doi: 10.1155/2015/893051 pubmed: 26504843 pmcid: 4609376
Ikram, H. et al. An ovine model of acute myocardial infarction and chronic left ventricular dysfunction. Angiology 48, 679–688. https://doi.org/10.1177/000331979704800803 (1997).
doi: 10.1177/000331979704800803 pubmed: 9269137
Maxwell, M. P., Hearse, D. J. & Yellon, D. M. Species variation in the coronary collateral circulation during regional myocardial ischaemia: a critical determinant of the rate of evolution and extent of myocardial infarction. Cardiovasc. Res. 21, 737–746. https://doi.org/10.1093/cvr/21.10.737 (1987).
doi: 10.1093/cvr/21.10.737 pubmed: 3440266
Bertho, E. & Gagnon, G. A comparative study in three dimension of the blood supply of the normal interventricular septum in human, canine, bovine, procine, ovine and equine. Dis. Chest 46, 251–262 (1964).
doi: 10.1378/chest.46.3.251
Terp, K. et al. The hemodynamic impact of diffuse myocardial ischemic lesions: an animal experimental model based on intracoronary microembolization. Heart Vessels 13, 132–141 (1998).
doi: 10.1007/BF01747830
Kim, W. et al. A porcine model of ischemic heart failure produced by intracoronary injection of ethyl alcohol. Heart Vessels 26, 342–348. https://doi.org/10.1007/s00380-010-0022-3 (2011).
doi: 10.1007/s00380-010-0022-3 pubmed: 20963597
Markovitz, L. J. et al. Large animal model of left ventricular aneurysm. Ann. Thorac. Surg. 48, 838–845 (1989).
doi: 10.1016/0003-4975(89)90682-6
Millner, R. W., Mann, J. M., Pearson, I. & Pepper, J. R. Experimental model of left ventricular failure. Ann. Thorac. Surg. 52, 78–83 (1991).
doi: 10.1016/0003-4975(91)91424-T
Heusch, G., Schulz, R., Baumgart, D., Haude, M. & Erbel, R. Coronary microembolization. Prog. Cardiovasc. Dis. 44, 217–230. https://doi.org/10.1053/pcad.2001.26968 (2001).
doi: 10.1053/pcad.2001.26968 pubmed: 11727279
Smiseth, O. A., Lindal, S., Mjos, O. D., Vik-Mo, H. & Jorgensen, L. Progression of myocardial damage following coronary microembolization in dogs. Acta Pathol. Microbiol. Immunol. Scand. A 91, 115–124 (1983).
pubmed: 6846015
Bush, L. R. & Shebuski, R. J. In vivo models of arterial thrombosis and thrombolysis. FASEB J. 4, 3087–3098. https://doi.org/10.1096/fasebj.4.13.2210155 (1990).
doi: 10.1096/fasebj.4.13.2210155 pubmed: 2210155
Garner, D., Ginzton, L. E., Jagels, G. & Laks, M. M. A new technique for producing myocardial infarction using coronary artery balloon occlusion. Cardiovasc. Res. 22, 42–46. https://doi.org/10.1093/cvr/22.1.42 (1988).
doi: 10.1093/cvr/22.1.42 pubmed: 3167927
Mitsos, S., Katsanos, K., Dougeni, E., Koletsis, E. N. & Dougenis, D. A critical appraisal of open- and closed-chest models of experimental myocardial ischemia. Lab. Anim. 38, 167–177. https://doi.org/10.1038/laban0509-167 (2009).
doi: 10.1038/laban0509-167
Gotberg, M. et al. Mild hypothermia reduces acute mortality and improves hemodynamic outcome in a cardiogenic shock pig model. Resuscitation 81, 1190–1196. https://doi.org/10.1016/j.resuscitation.2010.04.033 (2010).
doi: 10.1016/j.resuscitation.2010.04.033 pubmed: 20627520
Lindsey, M. L. et al. Guidelines for experimental models of myocardial ischemia and infarction. Am. J. Physiol. Heart Circ. Physiol. 314, H812–H838. https://doi.org/10.1152/ajpheart.00335.2017 (2018).
doi: 10.1152/ajpheart.00335.2017 pubmed: 29351451 pmcid: 5966768
Wouters, P. F. et al. Left ventricular assistance using a catheter-mounted coaxial flow pump (Hemopump) in a canine model of regional myocardial ischaemia. Eur. Heart J. 14, 567–575. https://doi.org/10.1093/eurheartj/14.4.567 (1993).
doi: 10.1093/eurheartj/14.4.567 pubmed: 8472723
Al Rasheed, N. M., Al Sayed, M. I., Al Zuhair, H. H., Al Obaid, A. R. & Fatani, A. J. Effects of two newly synthesized analogues of lidocaine on rat arterial blood pressure and heart rate. Pharmacol. Res. 43, 313–319. https://doi.org/10.1006/phrs.2000.0783 (2001).
doi: 10.1006/phrs.2000.0783 pubmed: 11352535
Freye, E., Schmidhammer, H. & Latasch, L. 14-methoxymetopon, a potent opioid, induces no respiratory depression, less sedation, and less bradycardia than sufentanil in the dog. Anesth. Analg. 90, 1359–1364. https://doi.org/10.1097/00000539-200006000-00018 (2000).
doi: 10.1097/00000539-200006000-00018 pubmed: 10825321
Michelin, M. T., Cheucle-Beaughard, M. & Duchene-Marullaz, P. Comparative effects of amiodarone, bepridil and perhexiline on coronary venous flow and several cardiovascular parameters. Arch. Int. Pharmacodyn. Ther. 245, 236–248 (1980).
pubmed: 6967717
Varga, K. & Kunos, G. Ethanol inhibition of baroreflex bradycardia: role of brainstem GABA receptors. Br. J. Pharmacol. 101, 773–775. https://doi.org/10.1111/j.1476-5381.1990.tb14155.x (1990).
doi: 10.1111/j.1476-5381.1990.tb14155.x pubmed: 1964817 pmcid: 1917857
Feola, M., Haiderer, O. & Kennedy, J. H. Experimental graded “pump failure” of the left ventricle. J. Surg. Res. 11, 325–341. https://doi.org/10.1016/0022-4804(71)90110-7 (1971).
doi: 10.1016/0022-4804(71)90110-7 pubmed: 5158803
Udesen, N. L. J. et al. Impact of concomitant vasoactive treatment and mechanical left ventricular unloading in a porcine model of profound cardiogenic shock. Crit. Care. 24, 95. https://doi.org/10.1186/s13054-020-2816-8 (2020).
doi: 10.1186/s13054-020-2816-8 pubmed: 32188462 pmcid: 7079533
Inoue, H., Waller, B. F. & Zipes, D. P. Intracoronary ethyl alcohol or phenol injection ablates aconitine-induced ventricular tachycardia in dogs. J. Am. Coll. Cardiol. 10, 1342–1349 (1987).
doi: 10.1016/S0735-1097(87)80139-0
Maron, B. J. Role of alcohol septal ablation in treatment of obstructive hypertrophic cardiomyopathy. Lancet 355, 425–426. https://doi.org/10.1016/S0140-6736(00)82005-X (2000).
doi: 10.1016/S0140-6736(00)82005-X pubmed: 10841119
Haines, D. E., Whayne, J. G. & DiMarco, J. P. Intracoronary ethanol ablation in swine: effects of ethanol concentration on lesion formation and response to programmed ventricular stimulation. J. Cardiovasc. Electrophysiol. 5, 422–431 (1994).
doi: 10.1111/j.1540-8167.1994.tb01181.x
Joudinaud, T. M. et al. An experimental method for the percutaneous induction of a posterolateral infarct and functional ischemic mitral regurgitation. J. Heart Valve Dis. 14, 460–466 (2005).
pubmed: 16116871
Ellman, B. A., Green, C. E., Eigenbrodt, E., Garriott, J. C. & Curry, T. S. Renal infarction with absolute ethanol. Invest. Radiol. 15, 318–322 (1980).
doi: 10.1097/00004424-198007000-00008
Reimer, K. A. & Jennings, R. B. The, “wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab. Invest. 40, 633–644 (1979).
pubmed: 449273
Weismuller, P. et al. Chemical ablation by subendocardial injection of ethanol via catheter–preliminary results in the pig heart. Eur. Heart J. 12, 1234–1239. https://doi.org/10.1093/eurheartj/12.11.1234 (1991).
doi: 10.1093/eurheartj/12.11.1234 pubmed: 1782955
Jennings, R. B., Murry, C. E., Steenbergen, C. Jr. & Reimer, K. A. Development of cell injury in sustained acute ischemia. Circulation 82, 2–12 (1990).
Sakamoto, H. et al. Effect of reperfusion on left ventricular regional remodeling strains after myocardial infarction. Ann. Thorac. Surg. 84, 1528–1536. https://doi.org/10.1016/j.athoracsur.2007.05.060 (2007).
doi: 10.1016/j.athoracsur.2007.05.060 pubmed: 17954057
Anversa, P. et al. Ischemic cardiomyopathy: myocyte cell loss, myocyte cellular hypertrophy, and myocyte cellular hyperplasia. Ann. N. Y. Acad. Sci. 752, 47–64. https://doi.org/10.1111/j.1749-6632.1995.tb17405.x (1995).
doi: 10.1111/j.1749-6632.1995.tb17405.x pubmed: 7755292
Frangogiannis, N. G. Pathophysiology of myocardial infarction. Compr. Physiol. 5, 1841–1875. https://doi.org/10.1002/cphy.c150006 (2015).
doi: 10.1002/cphy.c150006 pubmed: 26426469
Bolli, R. Why myocardial stunning is clinically important. Basic Res. Cardiol. 93, 169–172 (1998).
doi: 10.1007/s003950050083
Aymong, E. D., Ramanathan, K. & Buller, C. E. Pathophysiology of cardiogenic shock complicating acute myocardial infarction. Med. Clin. N. Am. 91, 701–712. https://doi.org/10.1016/j.mcna.2007.03.006 (2007).
doi: 10.1016/j.mcna.2007.03.006 pubmed: 17640543
Boor, P. J. & Reynolds, E. S. Myocardial infarct size: clinicopathologic agreement and discordance. Hum. Pathol. 8, 685–695 (1977).
doi: 10.1016/S0046-8177(77)80097-X
Page, D. L., Caulfield, J. B., Kastor, J. A., DeSanctis, R. W. & Sanders, C. A. Myocardial changes associated with cardiogenic shock. N. Engl. J. Med. 285, 133–137. https://doi.org/10.1056/NEJM197107152850301 (1971).
doi: 10.1056/NEJM197107152850301 pubmed: 5087702
Kaul, S. et al. The importance of defining left ventricular area at risk in vivo during acute myocardial infarction: an experimental evaluation with myocardial contrast two-dimensional echocardiography. Circulation 75, 1249–1260 (1987).
doi: 10.1161/01.CIR.75.6.1249
Alpert, J. S. & Thygesen, K. A new global definition of myocardial infarction for the 21st century. Pol. Arch. Med. Wewn 117, 485–486 (2007).
pubmed: 18363245
Gharacholou, S. M. et al. Implications and reasons for the lack of use of reperfusion therapy in patients with ST-segment elevation myocardial infarction: findings from the CRUSADE initiative. Am. Heart J. 159, 757–763. https://doi.org/10.1016/j.ahj.2010.02.009 (2010).
doi: 10.1016/j.ahj.2010.02.009 pubmed: 20435183

Auteurs

Mario Rienzo (M)

Univ. Bordeaux, INSERM, UMR 1034, Biology of Cardiovascular Diseases, 33600, Pessac, France.
Department of Anaesthesia and Critical Care, Magellan Medico-Surgical Center, CHU Bordeaux, 33000, Bordeaux, France.

Julien Imbault (J)

Univ. Bordeaux, INSERM, UMR 1034, Biology of Cardiovascular Diseases, 33600, Pessac, France.
Department of Anaesthesia and Critical Care, Magellan Medico-Surgical Center, CHU Bordeaux, 33000, Bordeaux, France.

Younes El Boustani (Y)

Univ. Bordeaux, INSERM, UMR 1034, Biology of Cardiovascular Diseases, 33600, Pessac, France.
Department of Anaesthesia and Critical Care, Magellan Medico-Surgical Center, CHU Bordeaux, 33000, Bordeaux, France.

Antoine Beurton (A)

Univ. Bordeaux, INSERM, UMR 1034, Biology of Cardiovascular Diseases, 33600, Pessac, France.
Department of Anaesthesia and Critical Care, Magellan Medico-Surgical Center, CHU Bordeaux, 33000, Bordeaux, France.

Carolina Carlos Sampedrano (C)

IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, 33600, Pessac, France.
Univ. Bordeaux, INSERM, UMR 1045, Cardiothoracic Research Center of Bordeaux, 33600, Pessac, France.

Philippe Pasdois (P)

IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, 33600, Pessac, France.
Univ. Bordeaux, INSERM, UMR 1045, Cardiothoracic Research Center of Bordeaux, 33600, Pessac, France.

Mathieu Pernot (M)

Univ. Bordeaux, INSERM, UMR 1034, Biology of Cardiovascular Diseases, 33600, Pessac, France.
Department of Cardiovascular Surgery, CHU Bordeaux, 33000, Bordeaux, France.

Olivier Bernus (O)

IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, 33600, Pessac, France.
Univ. Bordeaux, INSERM, UMR 1045, Cardiothoracic Research Center of Bordeaux, 33600, Pessac, France.

Michel Haïssaguerre (M)

IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, 33600, Pessac, France.
Univ. Bordeaux, INSERM, UMR 1045, Cardiothoracic Research Center of Bordeaux, 33600, Pessac, France.
Department of Electrophysiology, CHU Bordeaux, 33000, Bordeaux, France.

Thierry Couffinhal (T)

Univ. Bordeaux, INSERM, UMR 1034, Biology of Cardiovascular Diseases, 33600, Pessac, France.
CHU Bordeaux, Centre d'Exploration, de Prévention et de Traitement de l'Athérosclérose (CEPTA), 33000, Bordeaux, France.

Alexandre Ouattara (A)

Univ. Bordeaux, INSERM, UMR 1034, Biology of Cardiovascular Diseases, 33600, Pessac, France. alexandre.ouattara@chu-bordeaux.fr.
Department of Anaesthesia and Critical Care, Magellan Medico-Surgical Center, CHU Bordeaux, 33000, Bordeaux, France. alexandre.ouattara@chu-bordeaux.fr.
Department of Anaesthesia and Critical Care, Magellan Medico-Surgical Centre, Bordeaux University Hospital, Av. Magellan, 33600, Pessac, France. alexandre.ouattara@chu-bordeaux.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH