IPANEMAP: integrative probing analysis of nucleic acids empowered by multiple accessibility profiles.


Journal

Nucleic acids research
ISSN: 1362-4962
Titre abrégé: Nucleic Acids Res
Pays: England
ID NLM: 0411011

Informations de publication

Date de publication:
04 09 2020
Historique:
accepted: 29 07 2020
revised: 03 07 2020
received: 16 07 2019
pubmed: 1 8 2020
medline: 11 11 2020
entrez: 1 8 2020
Statut: ppublish

Résumé

The manual production of reliable RNA structure models from chemical probing experiments benefits from the integration of information derived from multiple protocols and reagents. However, the interpretation of multiple probing profiles remains a complex task, hindering the quality and reproducibility of modeling efforts. We introduce IPANEMAP, the first automated method for the modeling of RNA structure from multiple probing reactivity profiles. Input profiles can result from experiments based on diverse protocols, reagents, or collection of variants, and are jointly analyzed to predict the dominant conformations of an RNA. IPANEMAP combines sampling, clustering and multi-optimization, to produce secondary structure models that are both stable and well-supported by experimental evidences. The analysis of multiple reactivity profiles, both publicly available and produced in our study, demonstrates the good performances of IPANEMAP, even in a mono probing setting. It confirms the potential of integrating multiple sources of probing data, informing the design of informative probing assays.

Identifiants

pubmed: 32735675
pii: 5879432
doi: 10.1093/nar/gkaa607
pmc: PMC7470984
doi:

Substances chimiques

RNA 63231-63-0

Types de publication

Evaluation Study Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

8276-8289

Informations de copyright

© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.

Références

RNA. 2017 May;23(5):655-672
pubmed: 28138060
RNA. 2018 Feb;24(2):143-148
pubmed: 29114018
Biochemistry. 2017 Sep 5;56(35):4713-4721
pubmed: 28820243
Nucleic Acids Res. 2008 Aug;36(14):4653-66
pubmed: 18625613
RNA. 2009 Oct;15(10):1805-13
pubmed: 19703939
Nucleic Acids Res. 2004 Sep 27;32(17):5045-58
pubmed: 15452272
Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):97-102
pubmed: 19109441
Biochemistry. 2012 Sep 11;51(36):7037-9
pubmed: 22913637
RNA. 1995 Jun;1(4):363-74
pubmed: 7493315
Bioinformatics. 2012 Nov 15;28(22):3006-8
pubmed: 22976082
J Mol Biol. 1994 Nov 18;244(1):52-63
pubmed: 7966321
PLoS Comput Biol. 2015 Nov 13;11(11):e1004473
pubmed: 26566145
RNA. 2016 Aug;22(8):1109-19
pubmed: 27251549
J Biol Chem. 2004 Nov 12;279(46):48397-403
pubmed: 15355993
Nucleic Acids Res. 1988 Mar 25;16(5):2295-312
pubmed: 3357778
RNA. 2008 Mar;14(3):410-6
pubmed: 18230758
Nucleic Acids Res. 1987 Nov 25;15(22):9109-28
pubmed: 2446263
Methods Enzymol. 1989;180:192-212
pubmed: 2482414
J Phys Chem Lett. 2018 Jan 18;9(2):313-318
pubmed: 29265824
Nucleic Acids Res. 2015 Dec 2;43(21):e142
pubmed: 26184874
RNA. 2014 Jun;20(6):846-54
pubmed: 24742934
Nat Protoc. 2015 Nov;10(11):1643-69
pubmed: 26426499
BMC Bioinformatics. 2010 Mar 15;11:129
pubmed: 20230624
Algorithms Mol Biol. 2011 Nov 24;6:26
pubmed: 22115189
J Am Chem Soc. 2012 Apr 18;134(15):6617-24
pubmed: 22475022
J Am Chem Soc. 2012 Aug 15;134(32):13160-3
pubmed: 22852530
PLoS Comput Biol. 2015 May 20;11(5):e1004126
pubmed: 25992778
Nat Protoc. 2006;1(3):1610-6
pubmed: 17406453
J Am Chem Soc. 2008 Sep 17;130(37):12244-5
pubmed: 18710236
Nat Struct Mol Biol. 2005 Nov;12(11):1001-7
pubmed: 16244661
Nucleic Acids Res. 2018 Jan 9;46(1):314-323
pubmed: 29177466
Proc Natl Acad Sci U S A. 2004 May 11;101(19):7287-92
pubmed: 15123812
J Phys Chem B. 2018 May 10;122(18):4771-4783
pubmed: 29659274
Nucleic Acids Res. 2012 May;40(10):4261-72
pubmed: 22287623
Biochemistry. 2019 Jun 11;58(23):2655-2664
pubmed: 31117385
Methods Enzymol. 2000;318:3-21
pubmed: 10889976
Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5498-503
pubmed: 23503844
J Mol Biol. 1986 Feb 5;187(3):399-416
pubmed: 2422386
Nucleic Acids Res. 2012 Feb;40(4):e26
pubmed: 22139940
Methods. 2019 Jun 1;162-163:108-127
pubmed: 31145972
Nucleic Acids Res. 2017 Sep 6;45(15):8993-9004
pubmed: 28911115
Nucleic Acids Res. 2010 Jan;38(Database issue):D280-2
pubmed: 19880381
Mol Cell. 2015 Apr 16;58(2):353-61
pubmed: 25866246
Bioinformatics. 2016 Jan 1;32(1):145-7
pubmed: 26353838
Proc Natl Acad Sci U S A. 2014 May 27;111(21):7659-64
pubmed: 24821772
Bioinformatics. 2015 Feb 1;31(3):423-5
pubmed: 25273103
Nucleic Acids Res. 2003 Dec 15;31(24):7280-301
pubmed: 14654704
Proc Natl Acad Sci U S A. 2017 Sep 12;114(37):9876-9881
pubmed: 28851837
Nucleic Acids Res. 2001 May 15;29(10):2135-44
pubmed: 11353083
PLoS One. 2012;7(10):e45160
pubmed: 23091593
Biopolymers. 1990 May-Jun;29(6-7):1105-19
pubmed: 1695107
Nucleic Acids Res. 2017 Jul 7;45(12):7382-7400
pubmed: 28449096
Nucleic Acids Res. 2015 Sep 3;43(15):7247-59
pubmed: 26170232
RNA. 2013 Jan;19(1):63-73
pubmed: 23188808

Auteurs

Afaf Saaidi (A)

CNRS UMR 7161, LIX, Ecole Polytechnique, Institut Polytechnique de Paris, 1 rue Estienne d'Orves, 91120 Palaiseau, France.

Delphine Allouche (D)

CNRS UMR 8038, CitCoM, Université de Paris, 4 avenue de l'observatoire, 75006 Paris, France.

Mireille Regnier (M)

CNRS UMR 7161, LIX, Ecole Polytechnique, Institut Polytechnique de Paris, 1 rue Estienne d'Orves, 91120 Palaiseau, France.

Bruno Sargueil (B)

CNRS UMR 8038, CitCoM, Université de Paris, 4 avenue de l'observatoire, 75006 Paris, France.

Yann Ponty (Y)

CNRS UMR 7161, LIX, Ecole Polytechnique, Institut Polytechnique de Paris, 1 rue Estienne d'Orves, 91120 Palaiseau, France.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
T-Lymphocytes, Regulatory Lung Neoplasms Proto-Oncogene Proteins p21(ras) Animals Humans

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

Spencer D Shelton, Sara House, Luiza Martins Nascentes Melo et al.
1.00
DNA, Mitochondrial Humans Melanoma Mutation Neoplasm Metastasis

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software

Classifications MeSH