Analysis of Ugandan cervical carcinomas identifies human papillomavirus clade-specific epigenome and transcriptome landscapes.
Adult
Aged
DNA Methylation
/ genetics
Epigenome
/ genetics
Female
Humans
Middle Aged
Papillomaviridae
/ pathogenicity
Papillomavirus Infections
/ genetics
Promoter Regions, Genetic
/ genetics
Signal Transduction
/ genetics
Transcriptome
/ genetics
Uganda
Up-Regulation
/ genetics
Uterine Cervical Neoplasms
/ genetics
Journal
Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904
Informations de publication
Date de publication:
08 2020
08 2020
Historique:
received:
23
10
2019
accepted:
26
06
2020
entrez:
5
8
2020
pubmed:
5
8
2020
medline:
27
10
2020
Statut:
ppublish
Résumé
Cervical cancer is the most common cancer affecting sub-Saharan African women and is prevalent among HIV-positive (HIV
Identifiants
pubmed: 32747824
doi: 10.1038/s41588-020-0673-7
pii: 10.1038/s41588-020-0673-7
pmc: PMC7498180
mid: NIHMS1607577
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
800-810Subventions
Organisme : NCI NIH HHS
ID : U01 CA096230
Pays : United States
Organisme : NCI NIH HHS
ID : U01 CA066535
Pays : United States
Organisme : NCI NIH HHS
ID : UM1 CA181255
Pays : United States
Organisme : NCI NIH HHS
ID : HHSN261201500003I
Pays : United States
Organisme : NIAID NIH HHS
ID : P30 AI027757
Pays : United States
Organisme : CCR NIH HHS
ID : HHSN261200800001C
Pays : United States
Organisme : NCI NIH HHS
ID : HHSN261200800001E
Pays : United States
Organisme : CIHR
ID : FDN-143288
Pays : Canada
Organisme : NCI NIH HHS
ID : P50 CA098258
Pays : United States
Organisme : NCI NIH HHS
ID : U01 CA217842
Pays : United States
Organisme : NCI NIH HHS
ID : HHSN261201500003C
Pays : United States
Organisme : CIHR
ID : GSD-164207
Pays : Canada
Organisme : CIHR
ID : GSD-152374
Pays : Canada
Références
Bodily, J. & Laimins, L. A. Persistence of human papillomavirus infection: keys to malignant progression. Trends Microbiol. 19, 33–39 (2011).
pubmed: 21050765
doi: 10.1016/j.tim.2010.10.002
de Sanjose, S. et al. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol. 11, 1048–1056 (2010).
pubmed: 20952254
doi: 10.1016/S1470-2045(10)70230-8
Wright, J. D. et al. Human papillomavirus type and tobacco use as predictors of survival in early stage cervical carcinoma. Gynecol. Oncol. 98, 84–91 (2005).
pubmed: 15894364
doi: 10.1016/j.ygyno.2005.03.038
Yang, S.-H., Kong, S.-K., Lee, S.-H., Lim, S.-Y. & Park, C.-Y. Human papillomavirus 18 as a poor prognostic factor in stage I–IIA cervical cancer following primary surgical treatment. Obstet. Gynecol. Sci. 57, 492–500 (2014).
pubmed: 25469338
pmcid: 4245343
doi: 10.5468/ogs.2014.57.6.492
Lai, C.-H. et al. Role of human papillomavirus genotype in prognosis of early-stage cervical cancer undergoing primary surgery. J. Clin. Oncol. 25, 3628–3634 (2007).
pubmed: 17704412
doi: 10.1200/JCO.2007.11.2995
Garland, S. M. et al. Impact and effectiveness of the quadrivalent human papillomavirus vaccine: a systematic review of 10 years of real-world experience. Clin. Infect. Dis. 63, 519–527 (2016).
pubmed: 27230391
pmcid: 4967609
doi: 10.1093/cid/ciw354
Bruni, L. et al. Global estimates of human papillomavirus vaccination coverage by region and income level: a pooled analysis. Lancet Glob. Health 4, e453–e463 (2016).
pubmed: 27340003
doi: 10.1016/S2214-109X(16)30099-7
Nakisige, C., Schwartz, M. & Ndira, A. O. Cervical cancer screening and treatment in Uganda. Gynecol. Oncol. Rep. 20, 37–40 (2017).
pubmed: 28275695
pmcid: 5331149
doi: 10.1016/j.gore.2017.01.009
Zubizarreta, E. H., Fidarova, E., Healy, B. & Rosenblatt, E. Need for radiotherapy in low and middle income countries—the silent crisis continues. Clin. Oncol. (R. Coll. Radiol.) 27, 107–114 (2015).
doi: 10.1016/j.clon.2014.10.006
Ferlay, J. et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 144, 1941–1953 (2019).
pubmed: 30350310
doi: 10.1002/ijc.31937
Cancer Genome Atlas Research Network. Integrated genomic and molecular characterization of cervical cancer. Nature 543, 378–384 (2017).
doi: 10.1038/nature21386
Ojesina, A. I. et al. Landscape of genomic alterations in cervical carcinomas. Nature 506, 371–375 (2014).
pubmed: 24390348
doi: 10.1038/nature12881
Li, X. Emerging role of mutations in epigenetic regulators including MLL2 derived from The Cancer Genome Atlas for cervical cancer. BMC Cancer 17, 252 (2017).
pubmed: 28390392
pmcid: 5385072
doi: 10.1186/s12885-017-3257-x
Kelley, D. Z. et al. Integrated analysis of whole-genome ChIP–seq and RNA-seq data of primary head and neck tumor samples associates HPV integration sites with open chromatin marks. Cancer Res. 77, 6538–6550 (2017).
pubmed: 28947419
pmcid: 6029614
doi: 10.1158/0008-5472.CAN-17-0833
Lleras, R. A. et al. Unique DNA methylation loci distinguish anatomic site and HPV status in head and neck squamous cell carcinoma. Clin. Cancer Res. 19, 5444–5455 (2013).
pubmed: 23894057
pmcid: 3892374
doi: 10.1158/1078-0432.CCR-12-3280
Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Campbell, P. J. & Stratton, M. R. Deciphering signatures of mutational processes operative in human cancer. Cell Rep. 3, 246–259 (2013).
pubmed: 23318258
pmcid: 3588146
doi: 10.1016/j.celrep.2012.12.008
Rosenthal, R., McGranahan, N., Herrero, J., Taylor, B. S. & Swanton, C. DeconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution. Genome Biol. 17, 31 (2016).
pubmed: 26899170
pmcid: 4762164
doi: 10.1186/s13059-016-0893-4
Henderson, S., Chakravarthy, A., Su, X., Boshoff, C. & Fenton, T. R. APOBEC-mediated cytosine deamination links PIK3CA helical domain mutations to human papillomavirus-driven tumor development. Cell Rep. 7, 1833–1841 (2014).
pubmed: 24910434
doi: 10.1016/j.celrep.2014.05.012
Wallace, N. A. & Münger, K. The curious case of APOBEC3 activation by cancer-associated human papillomaviruses. PLoS Pathog. 14, e1006717 (2018).
pubmed: 29324878
pmcid: 5764418
doi: 10.1371/journal.ppat.1006717
Zhang, H.-M. et al. AnimalTFDB 2.0: a resource for expression, prediction and functional study of animal transcription factors. Nucleic Acids Res. 43, D76–D81 (2015).
pubmed: 25262351
doi: 10.1093/nar/gku887
Huang, F. W. et al. Highly recurrent TERT promoter mutations in human melanoma. Science 339, 957–959 (2013).
pubmed: 23348506
pmcid: 4423787
doi: 10.1126/science.1229259
Horn, S. et al. TERT promoter mutations in familial and sporadic melanoma. Science 339, 959–961 (2013).
pubmed: 23348503
doi: 10.1126/science.1230062
Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 534, 47–54 (2016).
pubmed: 27135926
pmcid: 4910866
doi: 10.1038/nature17676
Garinet, S. et al. High prevalence of a hotspot of noncoding somatic mutations in intron 6 of GPR126 in bladder cancer. Mol. Cancer Res. 17, 469–475 (2019).
pubmed: 30401719
doi: 10.1158/1541-7786.MCR-18-0363
Wu, S. et al. Whole-genome sequencing identifies ADGRG6 enhancer mutations and FRS2 duplications as angiogenesis-related drivers in bladder cancer. Nat. Commun. 10, 720 (2019).
pubmed: 30755618
pmcid: 6372626
doi: 10.1038/s41467-019-08576-5
Coetzee, S. G., Coetzee, G. A. & Hazelett, D. J. motifbreakR: an R/Bioconductor package for predicting variant effects at transcription factor binding sites. Bioinformatics 31, 3847–3849 (2015).
pubmed: 26272984
pmcid: 4653394
Chu, J. et al. BioBloom tools: fast, accurate and memory-efficient host species sequence screening using bloom filters. Bioinformatics 30, 3402–3404 (2014).
pubmed: 25143290
pmcid: 4816029
doi: 10.1093/bioinformatics/btu558
Schiffman, M., Clifford, G. & Buonaguro, F. M. Classification of weakly carcinogenic human papillomavirus types: addressing the limits of epidemiology at the borderline. Infect. Agent Cancer 4, 8 (2009).
pubmed: 19486508
pmcid: 2694995
doi: 10.1186/1750-9378-4-8
Maranga, I. O. et al. HIV infection alters the spectrum of HPV subtypes found in cervical smears and carcinomas from Kenyan women. Open Virol. J. 7, 19–27 (2013).
pubmed: 23494633
pmcid: 3594704
doi: 10.2174/1874357901307010019
Clifford, G. M. et al. Effect of HIV infection on human papillomavirus types causing invasive cervical cancer in Africa. J. Acquir. Immune Defic. Syndr. 73, 332–339 (2016).
pubmed: 27331659
pmcid: 5172520
doi: 10.1097/QAI.0000000000001113
Morris, T. J. et al. ChAMP: 450k Chip Analysis Methylation Pipeline. Bioinformatics 30, 428–430 (2014).
doi: 10.1093/bioinformatics/btt684
pubmed: 24336642
Tian, Y. et al. ChAMP: updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics 33, 3982–3984 (2017).
pubmed: 28961746
pmcid: 5860089
doi: 10.1093/bioinformatics/btx513
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Sandoval, J. et al. Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics 6, 692–702 (2011).
pubmed: 21593595
doi: 10.4161/epi.6.6.16196
Shen, J. et al. Exploring genome-wide DNA methylation profiles altered in hepatocellular carcinoma using Infinium HumanMethylation 450 BeadChips. Epigenetics 8, 34–43 (2013).
pubmed: 23208076
pmcid: 3549879
doi: 10.4161/epi.23062
Szklarczyk, D. et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).
pubmed: 30476243
doi: 10.1093/nar/gky1131
Doolittle-Hall, J. M., Cunningham Glasspoole, D. L., Seaman, W. T. & Webster-Cyriaque, J. Meta-analysis of DNA tumor–viral integration site selection indicates a role for repeats, gene expression and epigenetics. Cancers 7, 2217–2235 (2015).
pubmed: 26569308
pmcid: 4695887
doi: 10.3390/cancers7040887
Moody, C. A. & Laimins, L. A. Human papillomavirus oncoproteins: pathways to transformation. Nat. Rev. Cancer 10, 550–560 (2010).
pubmed: 20592731
doi: 10.1038/nrc2886
Monk, B. J., Tian, C., Rose, P. G. & Lanciano, R. Which clinical/pathologic factors matter in the era of chemoradiation as treatment for locally advanced cervical carcinoma? Analysis of two Gynecologic Oncology Group (GOG) trials. Gynecol. Oncol. 105, 427–433 (2007).
pubmed: 17275889
pmcid: 1940233
doi: 10.1016/j.ygyno.2006.12.027
Rader, J. S. et al. Genetic variations in human papillomavirus and cervical cancer outcomes. Int. J. Cancer 144, 2206–2214 (2019).
pubmed: 30515767
pmcid: 6450540
doi: 10.1002/ijc.32038
Hoadley, K. A. et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 158, 929–944 (2014).
pubmed: 25109877
pmcid: 4152462
doi: 10.1016/j.cell.2014.06.049
Ross-Innes, C. S. et al. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481, 389–393 (2012).
pubmed: 22217937
pmcid: 3272464
doi: 10.1038/nature10730
Lin-Shiao, E. et al. KMT2D regulates p63 target enhancers to coordinate epithelial homeostasis. Genes Dev. 32, 181–193 (2018).
pubmed: 29440247
pmcid: 5830930
doi: 10.1101/gad.306241.117
Herz, H.-M. et al. Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4. Genes Dev. 26, 2604–2620 (2012).
pubmed: 23166019
pmcid: 3521626
doi: 10.1101/gad.201327.112
Hu, D. et al. The MLL3/MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers. Mol. Cell. Biol. 33, 4745–4754 (2013).
pubmed: 24081332
pmcid: 3838007
doi: 10.1128/MCB.01181-13
Lee, J.-E. et al. H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation. eLife 2, e01503 (2013).
pubmed: 24368734
pmcid: 3869375
doi: 10.7554/eLife.01503
Hu, Z. et al. Genome-wide profiling of HPV integration in cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated integration mechanism. Nat. Genet. 47, 158–163 (2015).
pubmed: 25581428
doi: 10.1038/ng.3178
Pokholok, D. K. et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122, 517–527 (2005).
pubmed: 16122420
doi: 10.1016/j.cell.2005.06.026
Gates, L. A., Foulds, C. E. & O’Malley, B. W. Histone marks in the ‘driver’s seat’: functional roles in steering the transcription cycle. Trends Biochem. Sci. 42, 977–989 (2017).
pubmed: 29122461
pmcid: 5701853
doi: 10.1016/j.tibs.2017.10.004
Hurst, T. P. & Magiorkinis, G. Activation of the innate immune response by endogenous retroviruses. J. Gen. Virol. 96, 1207–1218 (2015).
pubmed: 26068187
doi: 10.1099/vir.0.000017
Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015).
pubmed: 25822800
pmcid: 4739640
doi: 10.1038/nmeth.3337
Okoye, A. A. & Picker, L. J. CD4
pubmed: 23772614
pmcid: 3729334
doi: 10.1111/imr.12066
Hensley-McBain, T. & Klatt, N. R. The dual role of neutrophils in HIV infection. Curr. HIV/AIDS Rep. 15, 1–10 (2018).
pubmed: 29516266
pmcid: 6086572
doi: 10.1007/s11904-018-0370-7
Sitole, B. N. & Mavri-Damelin, D. Peroxidasin is regulated by the epithelial–mesenchymal transition master transcription factor Snai1. Gene 646, 195–202 (2018).
pubmed: 29305973
doi: 10.1016/j.gene.2018.01.011
Zheng, Y.-Z. & Liang, L. High expression of PXDN is associated with poor prognosis and promotes proliferation, invasion as well as migration in ovarian cancer. Ann. Diagn. Pathol. 34, 161–165 (2018).
pubmed: 29661721
doi: 10.1016/j.anndiagpath.2018.03.002
Gifford, C. A. et al. Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell 153, 1149–1163 (2013).
pubmed: 23664763
pmcid: 3709577
doi: 10.1016/j.cell.2013.04.037
McBride, A. A. & Warburton, A. The role of integration in oncogenic progression of HPV-associated cancers. PLoS Pathog. 13, e1006211 (2017).
pubmed: 28384274
pmcid: 5383336
doi: 10.1371/journal.ppat.1006211
Kajitani, N., Satsuka, A., Kawate, A. & Sakai, H. Productive lifecycle of human papillomaviruses that depends upon squamous epithelial differentiation. Front. Microbiol. 3, 152 (2012).
Ou, H. D., May, A. P. & O’Shea, C. C. The critical protein interactions and structures that elicit growth deregulation in cancer and viral replication. Wiley Interdiscip. Rev. Syst. Biol. Med. 3, 48–73 (2011).
pubmed: 21061422
pmcid: 3053133
doi: 10.1002/wsbm.88
Jeon, S., Allen-Hoffmann, B. L. & Lambert, P. F. Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. J. Virol. 69, 2989–2997 (1995).
pubmed: 7707525
pmcid: 188998
doi: 10.1128/jvi.69.5.2989-2997.1995
Groves, I. J., Knight, E. L. A., Ang, Q. Y., Scarpini, C. G. & Coleman, N. HPV16 oncogene expression levels during early cervical carcinogenesis are determined by the balance of epigenetic chromatin modifications at the integrated virus genome. Oncogene 35, 4773–4786 (2016).
pubmed: 26876196
pmcid: 5024154
doi: 10.1038/onc.2016.8
Pleasance, E. et al. Pan-cancer analysis of advanced patient tumors reveals interactions between therapy and genomic landscapes. Nat. Cancer 1, 452–468 (2020).
doi: 10.1038/s43018-020-0050-6
pubmed: 35121966
Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).
pubmed: 20080505
pmcid: 2828108
doi: 10.1093/bioinformatics/btp698
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943
pmcid: 2723002
doi: 10.1093/bioinformatics/btp352
Saunders, C. T. et al. Strelka: accurate somatic small-variant calling from sequenced tumor–normal sample pairs. Bioinformatics 28, 1811–1817 (2012).
pubmed: 22581179
doi: 10.1093/bioinformatics/bts271
Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 6, 80–92 (2012).
pubmed: 22728672
pmcid: 3679285
doi: 10.4161/fly.19695
Chun, H.-J. E. et al. Genome-wide profiles of extra-cranial malignant rhabdoid tumors reveal heterogeneity and dysregulated developmental pathways. Cancer Cell 29, 394–406 (2016).
pubmed: 26977886
pmcid: 5094835
doi: 10.1016/j.ccell.2016.02.009
Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).
pubmed: 18798982
pmcid: 2592715
doi: 10.1186/gb-2008-9-9-r137
Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).
pubmed: 12045153
pmcid: 186604
doi: 10.1101/gr.229102
Kent, W. J., Zweig, A. S., Barber, G., Hinrichs, A. S. & Karolchik, D. BigWig and BigBed: enabling browsing of large distributed datasets. Bioinformatics 26, 2204–2207 (2010).
pubmed: 20639541
pmcid: 2922891
doi: 10.1093/bioinformatics/btq351
Landt, S. G. et al. ChIP–seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813–1831 (2012).
pubmed: 22955991
pmcid: 3431496
doi: 10.1101/gr.136184.111
Zhao, E. Y. et al. Homologous recombination deficiency and platinum-based therapy outcomes in advanced breast cancer. Clin. Cancer Res. 23, 7521–7530 (2017).
pubmed: 29246904
doi: 10.1158/1078-0432.CCR-17-1941
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
pubmed: 20644199
pmcid: 2928508
doi: 10.1101/gr.107524.110
Mermel, C. H. et al. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 12, R41 (2011).
pubmed: 21527027
pmcid: 3218867
doi: 10.1186/gb-2011-12-4-r41
Arthur, S. E. et al. Genome-wide discovery of somatic regulatory variants in diffuse large B-cell lymphoma. Nat. Commun. 9, 4001 (2018).
pubmed: 30275490
pmcid: 6167379
doi: 10.1038/s41467-018-06354-3
Ding, J. et al. Feature-based classifiers for somatic mutation detection in tumour–normal paired sequencing data. Bioinformatics 28, 167–175 (2012).
pubmed: 22084253
doi: 10.1093/bioinformatics/btr629
Wilkerson, M. D. & Hayes, D. N. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 26, 1572–1573 (2010).
pubmed: 20427518
pmcid: 2881355
doi: 10.1093/bioinformatics/btq170
Quinlan, A. R. BEDTools: the Swiss-army tool for genome feature analysis. Curr. Protoc. Bioinformatics 47, 11.12.1–11.12.34 (2014).
doi: 10.1002/0471250953.bi1112s47
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).
pubmed: 20513432
pmcid: 2898526
doi: 10.1016/j.molcel.2010.05.004
Ramírez, F., Dündar, F., Diehl, S., Grüning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–W191 (2014).
pubmed: 24799436
pmcid: 4086134
doi: 10.1093/nar/gku365
Pellacani, D. et al. Analysis of normal human mammary epigenomes reveals cell-specific active enhancer states and associated transcription factor networks. Cell Rep. 17, 2060–2074 (2016).
pubmed: 27851968
doi: 10.1016/j.celrep.2016.10.058
Chakravarty, D. et al. OncoKB: a precision oncology knowledge base. JCO Precis. Oncol. https://doi.org/10.1200/PO.17.00011 (2017).