Analysis of Ugandan cervical carcinomas identifies human papillomavirus clade-specific epigenome and transcriptome landscapes.


Journal

Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904

Informations de publication

Date de publication:
08 2020
Historique:
received: 23 10 2019
accepted: 26 06 2020
entrez: 5 8 2020
pubmed: 5 8 2020
medline: 27 10 2020
Statut: ppublish

Résumé

Cervical cancer is the most common cancer affecting sub-Saharan African women and is prevalent among HIV-positive (HIV

Identifiants

pubmed: 32747824
doi: 10.1038/s41588-020-0673-7
pii: 10.1038/s41588-020-0673-7
pmc: PMC7498180
mid: NIHMS1607577
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

800-810

Subventions

Organisme : NCI NIH HHS
ID : U01 CA096230
Pays : United States
Organisme : NCI NIH HHS
ID : U01 CA066535
Pays : United States
Organisme : NCI NIH HHS
ID : UM1 CA181255
Pays : United States
Organisme : NCI NIH HHS
ID : HHSN261201500003I
Pays : United States
Organisme : NIAID NIH HHS
ID : P30 AI027757
Pays : United States
Organisme : CCR NIH HHS
ID : HHSN261200800001C
Pays : United States
Organisme : NCI NIH HHS
ID : HHSN261200800001E
Pays : United States
Organisme : CIHR
ID : FDN-143288
Pays : Canada
Organisme : NCI NIH HHS
ID : P50 CA098258
Pays : United States
Organisme : NCI NIH HHS
ID : U01 CA217842
Pays : United States
Organisme : NCI NIH HHS
ID : HHSN261201500003C
Pays : United States
Organisme : CIHR
ID : GSD-164207
Pays : Canada
Organisme : CIHR
ID : GSD-152374
Pays : Canada

Références

Bodily, J. & Laimins, L. A. Persistence of human papillomavirus infection: keys to malignant progression. Trends Microbiol. 19, 33–39 (2011).
pubmed: 21050765 doi: 10.1016/j.tim.2010.10.002
de Sanjose, S. et al. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol. 11, 1048–1056 (2010).
pubmed: 20952254 doi: 10.1016/S1470-2045(10)70230-8
Wright, J. D. et al. Human papillomavirus type and tobacco use as predictors of survival in early stage cervical carcinoma. Gynecol. Oncol. 98, 84–91 (2005).
pubmed: 15894364 doi: 10.1016/j.ygyno.2005.03.038
Yang, S.-H., Kong, S.-K., Lee, S.-H., Lim, S.-Y. & Park, C.-Y. Human papillomavirus 18 as a poor prognostic factor in stage I–IIA cervical cancer following primary surgical treatment. Obstet. Gynecol. Sci. 57, 492–500 (2014).
pubmed: 25469338 pmcid: 4245343 doi: 10.5468/ogs.2014.57.6.492
Lai, C.-H. et al. Role of human papillomavirus genotype in prognosis of early-stage cervical cancer undergoing primary surgery. J. Clin. Oncol. 25, 3628–3634 (2007).
pubmed: 17704412 doi: 10.1200/JCO.2007.11.2995
Garland, S. M. et al. Impact and effectiveness of the quadrivalent human papillomavirus vaccine: a systematic review of 10 years of real-world experience. Clin. Infect. Dis. 63, 519–527 (2016).
pubmed: 27230391 pmcid: 4967609 doi: 10.1093/cid/ciw354
Bruni, L. et al. Global estimates of human papillomavirus vaccination coverage by region and income level: a pooled analysis. Lancet Glob. Health 4, e453–e463 (2016).
pubmed: 27340003 doi: 10.1016/S2214-109X(16)30099-7
Nakisige, C., Schwartz, M. & Ndira, A. O. Cervical cancer screening and treatment in Uganda. Gynecol. Oncol. Rep. 20, 37–40 (2017).
pubmed: 28275695 pmcid: 5331149 doi: 10.1016/j.gore.2017.01.009
Zubizarreta, E. H., Fidarova, E., Healy, B. & Rosenblatt, E. Need for radiotherapy in low and middle income countries—the silent crisis continues. Clin. Oncol. (R. Coll. Radiol.) 27, 107–114 (2015).
doi: 10.1016/j.clon.2014.10.006
Ferlay, J. et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 144, 1941–1953 (2019).
pubmed: 30350310 doi: 10.1002/ijc.31937
Cancer Genome Atlas Research Network. Integrated genomic and molecular characterization of cervical cancer. Nature 543, 378–384 (2017).
doi: 10.1038/nature21386
Ojesina, A. I. et al. Landscape of genomic alterations in cervical carcinomas. Nature 506, 371–375 (2014).
pubmed: 24390348 doi: 10.1038/nature12881
Li, X. Emerging role of mutations in epigenetic regulators including MLL2 derived from The Cancer Genome Atlas for cervical cancer. BMC Cancer 17, 252 (2017).
pubmed: 28390392 pmcid: 5385072 doi: 10.1186/s12885-017-3257-x
Kelley, D. Z. et al. Integrated analysis of whole-genome ChIP–seq and RNA-seq data of primary head and neck tumor samples associates HPV integration sites with open chromatin marks. Cancer Res. 77, 6538–6550 (2017).
pubmed: 28947419 pmcid: 6029614 doi: 10.1158/0008-5472.CAN-17-0833
Lleras, R. A. et al. Unique DNA methylation loci distinguish anatomic site and HPV status in head and neck squamous cell carcinoma. Clin. Cancer Res. 19, 5444–5455 (2013).
pubmed: 23894057 pmcid: 3892374 doi: 10.1158/1078-0432.CCR-12-3280
Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Campbell, P. J. & Stratton, M. R. Deciphering signatures of mutational processes operative in human cancer. Cell Rep. 3, 246–259 (2013).
pubmed: 23318258 pmcid: 3588146 doi: 10.1016/j.celrep.2012.12.008
Rosenthal, R., McGranahan, N., Herrero, J., Taylor, B. S. & Swanton, C. DeconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution. Genome Biol. 17, 31 (2016).
pubmed: 26899170 pmcid: 4762164 doi: 10.1186/s13059-016-0893-4
Henderson, S., Chakravarthy, A., Su, X., Boshoff, C. & Fenton, T. R. APOBEC-mediated cytosine deamination links PIK3CA helical domain mutations to human papillomavirus-driven tumor development. Cell Rep. 7, 1833–1841 (2014).
pubmed: 24910434 doi: 10.1016/j.celrep.2014.05.012
Wallace, N. A. & Münger, K. The curious case of APOBEC3 activation by cancer-associated human papillomaviruses. PLoS Pathog. 14, e1006717 (2018).
pubmed: 29324878 pmcid: 5764418 doi: 10.1371/journal.ppat.1006717
Zhang, H.-M. et al. AnimalTFDB 2.0: a resource for expression, prediction and functional study of animal transcription factors. Nucleic Acids Res. 43, D76–D81 (2015).
pubmed: 25262351 doi: 10.1093/nar/gku887
Huang, F. W. et al. Highly recurrent TERT promoter mutations in human melanoma. Science 339, 957–959 (2013).
pubmed: 23348506 pmcid: 4423787 doi: 10.1126/science.1229259
Horn, S. et al. TERT promoter mutations in familial and sporadic melanoma. Science 339, 959–961 (2013).
pubmed: 23348503 doi: 10.1126/science.1230062
Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 534, 47–54 (2016).
pubmed: 27135926 pmcid: 4910866 doi: 10.1038/nature17676
Garinet, S. et al. High prevalence of a hotspot of noncoding somatic mutations in intron 6 of GPR126 in bladder cancer. Mol. Cancer Res. 17, 469–475 (2019).
pubmed: 30401719 doi: 10.1158/1541-7786.MCR-18-0363
Wu, S. et al. Whole-genome sequencing identifies ADGRG6 enhancer mutations and FRS2 duplications as angiogenesis-related drivers in bladder cancer. Nat. Commun. 10, 720 (2019).
pubmed: 30755618 pmcid: 6372626 doi: 10.1038/s41467-019-08576-5
Coetzee, S. G., Coetzee, G. A. & Hazelett, D. J. motifbreakR: an R/Bioconductor package for predicting variant effects at transcription factor binding sites. Bioinformatics 31, 3847–3849 (2015).
pubmed: 26272984 pmcid: 4653394
Chu, J. et al. BioBloom tools: fast, accurate and memory-efficient host species sequence screening using bloom filters. Bioinformatics 30, 3402–3404 (2014).
pubmed: 25143290 pmcid: 4816029 doi: 10.1093/bioinformatics/btu558
Schiffman, M., Clifford, G. & Buonaguro, F. M. Classification of weakly carcinogenic human papillomavirus types: addressing the limits of epidemiology at the borderline. Infect. Agent Cancer 4, 8 (2009).
pubmed: 19486508 pmcid: 2694995 doi: 10.1186/1750-9378-4-8
Maranga, I. O. et al. HIV infection alters the spectrum of HPV subtypes found in cervical smears and carcinomas from Kenyan women. Open Virol. J. 7, 19–27 (2013).
pubmed: 23494633 pmcid: 3594704 doi: 10.2174/1874357901307010019
Clifford, G. M. et al. Effect of HIV infection on human papillomavirus types causing invasive cervical cancer in Africa. J. Acquir. Immune Defic. Syndr. 73, 332–339 (2016).
pubmed: 27331659 pmcid: 5172520 doi: 10.1097/QAI.0000000000001113
Morris, T. J. et al. ChAMP: 450k Chip Analysis Methylation Pipeline. Bioinformatics 30, 428–430 (2014).
doi: 10.1093/bioinformatics/btt684 pubmed: 24336642
Tian, Y. et al. ChAMP: updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics 33, 3982–3984 (2017).
pubmed: 28961746 pmcid: 5860089 doi: 10.1093/bioinformatics/btx513
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Sandoval, J. et al. Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics 6, 692–702 (2011).
pubmed: 21593595 doi: 10.4161/epi.6.6.16196
Shen, J. et al. Exploring genome-wide DNA methylation profiles altered in hepatocellular carcinoma using Infinium HumanMethylation 450 BeadChips. Epigenetics 8, 34–43 (2013).
pubmed: 23208076 pmcid: 3549879 doi: 10.4161/epi.23062
Szklarczyk, D. et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).
pubmed: 30476243 doi: 10.1093/nar/gky1131
Doolittle-Hall, J. M., Cunningham Glasspoole, D. L., Seaman, W. T. & Webster-Cyriaque, J. Meta-analysis of DNA tumor–viral integration site selection indicates a role for repeats, gene expression and epigenetics. Cancers 7, 2217–2235 (2015).
pubmed: 26569308 pmcid: 4695887 doi: 10.3390/cancers7040887
Moody, C. A. & Laimins, L. A. Human papillomavirus oncoproteins: pathways to transformation. Nat. Rev. Cancer 10, 550–560 (2010).
pubmed: 20592731 doi: 10.1038/nrc2886
Monk, B. J., Tian, C., Rose, P. G. & Lanciano, R. Which clinical/pathologic factors matter in the era of chemoradiation as treatment for locally advanced cervical carcinoma? Analysis of two Gynecologic Oncology Group (GOG) trials. Gynecol. Oncol. 105, 427–433 (2007).
pubmed: 17275889 pmcid: 1940233 doi: 10.1016/j.ygyno.2006.12.027
Rader, J. S. et al. Genetic variations in human papillomavirus and cervical cancer outcomes. Int. J. Cancer 144, 2206–2214 (2019).
pubmed: 30515767 pmcid: 6450540 doi: 10.1002/ijc.32038
Hoadley, K. A. et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 158, 929–944 (2014).
pubmed: 25109877 pmcid: 4152462 doi: 10.1016/j.cell.2014.06.049
Ross-Innes, C. S. et al. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481, 389–393 (2012).
pubmed: 22217937 pmcid: 3272464 doi: 10.1038/nature10730
Lin-Shiao, E. et al. KMT2D regulates p63 target enhancers to coordinate epithelial homeostasis. Genes Dev. 32, 181–193 (2018).
pubmed: 29440247 pmcid: 5830930 doi: 10.1101/gad.306241.117
Herz, H.-M. et al. Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4. Genes Dev. 26, 2604–2620 (2012).
pubmed: 23166019 pmcid: 3521626 doi: 10.1101/gad.201327.112
Hu, D. et al. The MLL3/MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers. Mol. Cell. Biol. 33, 4745–4754 (2013).
pubmed: 24081332 pmcid: 3838007 doi: 10.1128/MCB.01181-13
Lee, J.-E. et al. H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation. eLife 2, e01503 (2013).
pubmed: 24368734 pmcid: 3869375 doi: 10.7554/eLife.01503
Hu, Z. et al. Genome-wide profiling of HPV integration in cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated integration mechanism. Nat. Genet. 47, 158–163 (2015).
pubmed: 25581428 doi: 10.1038/ng.3178
Pokholok, D. K. et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122, 517–527 (2005).
pubmed: 16122420 doi: 10.1016/j.cell.2005.06.026
Gates, L. A., Foulds, C. E. & O’Malley, B. W. Histone marks in the ‘driver’s seat’: functional roles in steering the transcription cycle. Trends Biochem. Sci. 42, 977–989 (2017).
pubmed: 29122461 pmcid: 5701853 doi: 10.1016/j.tibs.2017.10.004
Hurst, T. P. & Magiorkinis, G. Activation of the innate immune response by endogenous retroviruses. J. Gen. Virol. 96, 1207–1218 (2015).
pubmed: 26068187 doi: 10.1099/vir.0.000017
Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015).
pubmed: 25822800 pmcid: 4739640 doi: 10.1038/nmeth.3337
Okoye, A. A. & Picker, L. J. CD4
pubmed: 23772614 pmcid: 3729334 doi: 10.1111/imr.12066
Hensley-McBain, T. & Klatt, N. R. The dual role of neutrophils in HIV infection. Curr. HIV/AIDS Rep. 15, 1–10 (2018).
pubmed: 29516266 pmcid: 6086572 doi: 10.1007/s11904-018-0370-7
Sitole, B. N. & Mavri-Damelin, D. Peroxidasin is regulated by the epithelial–mesenchymal transition master transcription factor Snai1. Gene 646, 195–202 (2018).
pubmed: 29305973 doi: 10.1016/j.gene.2018.01.011
Zheng, Y.-Z. & Liang, L. High expression of PXDN is associated with poor prognosis and promotes proliferation, invasion as well as migration in ovarian cancer. Ann. Diagn. Pathol. 34, 161–165 (2018).
pubmed: 29661721 doi: 10.1016/j.anndiagpath.2018.03.002
Gifford, C. A. et al. Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell 153, 1149–1163 (2013).
pubmed: 23664763 pmcid: 3709577 doi: 10.1016/j.cell.2013.04.037
McBride, A. A. & Warburton, A. The role of integration in oncogenic progression of HPV-associated cancers. PLoS Pathog. 13, e1006211 (2017).
pubmed: 28384274 pmcid: 5383336 doi: 10.1371/journal.ppat.1006211
Kajitani, N., Satsuka, A., Kawate, A. & Sakai, H. Productive lifecycle of human papillomaviruses that depends upon squamous epithelial differentiation. Front. Microbiol. 3, 152 (2012).
Ou, H. D., May, A. P. & O’Shea, C. C. The critical protein interactions and structures that elicit growth deregulation in cancer and viral replication. Wiley Interdiscip. Rev. Syst. Biol. Med. 3, 48–73 (2011).
pubmed: 21061422 pmcid: 3053133 doi: 10.1002/wsbm.88
Jeon, S., Allen-Hoffmann, B. L. & Lambert, P. F. Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. J. Virol. 69, 2989–2997 (1995).
pubmed: 7707525 pmcid: 188998 doi: 10.1128/jvi.69.5.2989-2997.1995
Groves, I. J., Knight, E. L. A., Ang, Q. Y., Scarpini, C. G. & Coleman, N. HPV16 oncogene expression levels during early cervical carcinogenesis are determined by the balance of epigenetic chromatin modifications at the integrated virus genome. Oncogene 35, 4773–4786 (2016).
pubmed: 26876196 pmcid: 5024154 doi: 10.1038/onc.2016.8
Pleasance, E. et al. Pan-cancer analysis of advanced patient tumors reveals interactions between therapy and genomic landscapes. Nat. Cancer 1, 452–468 (2020).
doi: 10.1038/s43018-020-0050-6 pubmed: 35121966
Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).
pubmed: 20080505 pmcid: 2828108 doi: 10.1093/bioinformatics/btp698
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943 pmcid: 2723002 doi: 10.1093/bioinformatics/btp352
Saunders, C. T. et al. Strelka: accurate somatic small-variant calling from sequenced tumor–normal sample pairs. Bioinformatics 28, 1811–1817 (2012).
pubmed: 22581179 doi: 10.1093/bioinformatics/bts271
Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 6, 80–92 (2012).
pubmed: 22728672 pmcid: 3679285 doi: 10.4161/fly.19695
Chun, H.-J. E. et al. Genome-wide profiles of extra-cranial malignant rhabdoid tumors reveal heterogeneity and dysregulated developmental pathways. Cancer Cell 29, 394–406 (2016).
pubmed: 26977886 pmcid: 5094835 doi: 10.1016/j.ccell.2016.02.009
Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).
pubmed: 18798982 pmcid: 2592715 doi: 10.1186/gb-2008-9-9-r137
Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).
pubmed: 12045153 pmcid: 186604 doi: 10.1101/gr.229102
Kent, W. J., Zweig, A. S., Barber, G., Hinrichs, A. S. & Karolchik, D. BigWig and BigBed: enabling browsing of large distributed datasets. Bioinformatics 26, 2204–2207 (2010).
pubmed: 20639541 pmcid: 2922891 doi: 10.1093/bioinformatics/btq351
Landt, S. G. et al. ChIP–seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813–1831 (2012).
pubmed: 22955991 pmcid: 3431496 doi: 10.1101/gr.136184.111
Zhao, E. Y. et al. Homologous recombination deficiency and platinum-based therapy outcomes in advanced breast cancer. Clin. Cancer Res. 23, 7521–7530 (2017).
pubmed: 29246904 doi: 10.1158/1078-0432.CCR-17-1941
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
pubmed: 20644199 pmcid: 2928508 doi: 10.1101/gr.107524.110
Mermel, C. H. et al. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 12, R41 (2011).
pubmed: 21527027 pmcid: 3218867 doi: 10.1186/gb-2011-12-4-r41
Arthur, S. E. et al. Genome-wide discovery of somatic regulatory variants in diffuse large B-cell lymphoma. Nat. Commun. 9, 4001 (2018).
pubmed: 30275490 pmcid: 6167379 doi: 10.1038/s41467-018-06354-3
Ding, J. et al. Feature-based classifiers for somatic mutation detection in tumour–normal paired sequencing data. Bioinformatics 28, 167–175 (2012).
pubmed: 22084253 doi: 10.1093/bioinformatics/btr629
Wilkerson, M. D. & Hayes, D. N. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 26, 1572–1573 (2010).
pubmed: 20427518 pmcid: 2881355 doi: 10.1093/bioinformatics/btq170
Quinlan, A. R. BEDTools: the Swiss-army tool for genome feature analysis. Curr. Protoc. Bioinformatics 47, 11.12.1–11.12.34 (2014).
doi: 10.1002/0471250953.bi1112s47
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).
pubmed: 20513432 pmcid: 2898526 doi: 10.1016/j.molcel.2010.05.004
Ramírez, F., Dündar, F., Diehl, S., Grüning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–W191 (2014).
pubmed: 24799436 pmcid: 4086134 doi: 10.1093/nar/gku365
Pellacani, D. et al. Analysis of normal human mammary epigenomes reveals cell-specific active enhancer states and associated transcription factor networks. Cell Rep. 17, 2060–2074 (2016).
pubmed: 27851968 doi: 10.1016/j.celrep.2016.10.058
Chakravarty, D. et al. OncoKB: a precision oncology knowledge base. JCO Precis. Oncol. https://doi.org/10.1200/PO.17.00011 (2017).

Auteurs

Alessia Gagliardi (A)

Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada.

Vanessa L Porter (VL)

Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada.
Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.

Zusheng Zong (Z)

Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada.

Reanne Bowlby (R)

Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada.

Emma Titmuss (E)

Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada.

Constance Namirembe (C)

Uganda Cancer Institute, Kampala, Uganda.

Nicholas B Griner (NB)

Office of Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

Hilary Petrello (H)

Nationwide Children's Hospital, Columbus, OH, USA.

Jay Bowen (J)

Nationwide Children's Hospital, Columbus, OH, USA.

Simon K Chan (SK)

Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada.

Luka Culibrk (L)

Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada.

Teresa M Darragh (TM)

Department of Pathology, University of California at San Francisco, San Francisco, CA, USA.

Mark H Stoler (MH)

Department of Pathology, University of Virginia, Charlottesville, VA, USA.

Thomas C Wright (TC)

Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.

Patee Gesuwan (P)

Office of Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

Maureen A Dyer (MA)

Frederick National Laboratory for Cancer Research, Frederick, MD, USA.

Yussanne Ma (Y)

Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada.

Karen L Mungall (KL)

Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada.

Steven J M Jones (SJM)

Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada.
Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.

Carolyn Nakisige (C)

Uganda Cancer Institute, Kampala, Uganda.

Karen Novik (K)

Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada.

Jackson Orem (J)

Uganda Cancer Institute, Kampala, Uganda.

Martin Origa (M)

Uganda Cancer Institute, Kampala, Uganda.

Julie M Gastier-Foster (JM)

Nationwide Children's Hospital, Columbus, OH, USA.
Departments of Pathology and Pediatrics, The Ohio State University, Columbus, OH, USA.

Robert Yarchoan (R)

Office of HIV and AIDS Malignancy, National Cancer Institute, National Institues of Health, Bethesda, MD, USA.
HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

Corey Casper (C)

Infectious Disease Research Institute, Seattle, WA, USA.

Gordon B Mills (GB)

Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.

Janet S Rader (JS)

Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA.

Akinyemi I Ojesina (AI)

Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA.
O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.

Daniela S Gerhard (DS)

Office of Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

Andrew J Mungall (AJ)

Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada.

Marco A Marra (MA)

Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada. mmarra@bcgsc.ca.
Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada. mmarra@bcgsc.ca.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH