Personalized medicine for cardiovascular diseases.


Journal

Journal of human genetics
ISSN: 1435-232X
Titre abrégé: J Hum Genet
Pays: England
ID NLM: 9808008

Informations de publication

Date de publication:
Jan 2021
Historique:
received: 01 05 2020
accepted: 19 07 2020
revised: 28 05 2020
pubmed: 11 8 2020
medline: 29 6 2021
entrez: 11 8 2020
Statut: ppublish

Résumé

Personalized medicine is an emerging concept involving managing the health of patients based on their individual characteristics, including particular genotypes. Cardiovascular diseases are heritable traits, and family history information is useful for risk prediction. As such, determining genetic information (germline genetic mutations) may also be applied to risk prediction. Furthermore, accumulating evidence suggests that genetic background can provide guidance for selecting effective treatments and preventive strategies in individuals with particular genotypes. These concepts may be applicable both to rare Mendelian diseases and to common complex traits. In this review, we define the concept and provide examples of personalized medicine based on human genetics for cardiovascular diseases, including coronary artery disease, arrhythmia, and cardiomyopathies. We also provide a particular focus on Mendelian randomization studies, especially those examining loss-of function genetic variations, for identifying high-risk individuals, as well as signaling pathways that may be useful targets for improving healthy living without cardiovascular events.

Identifiants

pubmed: 32772049
doi: 10.1038/s10038-020-0818-7
pii: 10.1038/s10038-020-0818-7
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

67-74

Subventions

Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : JP17K09082
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : JP20H03927

Références

Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019;139:e56–28.
pubmed: 30700139
Timmis A, Townsend N, Gale CP, Torbica A, Lettino M, Petersen SE, et al. European Society of Cardiology: cardiovascular disease statistics 2019. Eur Heart J. 2020;41:12–85.
pubmed: 31820000
Yeboah J, McClelland RL, Polonsky TS, Burke GL, Sibley CT, O’Leary D, et al. Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate-risk individuals. JAMA. 2012;308:788–95.
pubmed: 22910756 pmcid: 4141475
Mabuchi H. Half a century tales of familial hypercholesterolemia (FH) in Japan. J Atheroscler Thromb. 2017;24:189–207.
pubmed: 28179607 pmcid: 5383536
Luirink IK, Wiegman A, Kusters DM, Hof MH, Groothoff JW, de Groot E, et al. 20-year follow-up of statins in children with familial hypercholesterolemia. N Engl J Med. 2019;381:1547–56.
pubmed: 31618540
Khera AV, Won HH, Peloso GM, Lawson KS, Bartz TM, Deng X, et al. Diagnostic yield and clinical utility of sequencing familial hypercholesterolemia genes in patients with severe hypercholesterolemia. J Am Coll Cardiol. 2016;67:2578–89.
pubmed: 27050191 pmcid: 5405769
Tada H, Kawashiri MA, Nohara A, Inazu A, Mabuchi H, Yamagishi M. Impact of clinical signs and genetic diagnosis of familial hypercholesterolaemia on the prevalence of coronary artery disease in patients with severe hypercholesterolaemia. Eur Heart J. 2017;38:1573–9.
pubmed: 28159968
Fatkin D, Huttner IG, Kovacic JC, Seidman JG, Seidman CE. Precision medicine in the management of dilated cardiomyopathy: JACC state-of-the-art review. J Am Coll Cardiol. 2019;74:2921–38.
pubmed: 31806137
Choi SH, Weng LC, Roselli C, Lin H, Haggerty CM, Shoemaker MB, et al. Association between titin loss-of-function variants and early-onset atrial fibrillation. JAMA. 2018;320:2354–64.
pubmed: 30535219 pmcid: 6436530
Tada H, Melander O, Louie JZ, Catanese JJ, Rowland CM, Devlin JJ, et al. Risk prediction by genetic risk scores for coronary heart disease is independent of self-reported family history. Eur Heart J. 2016;37:561–7.
pubmed: 26392438
Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet. 2018;50:1219–24.
pubmed: 30104762 pmcid: 6128408
Khera AV, Chaffin M, Zekavat SM, Collins RL, Roselli C, Natarajan P, et al. Whole-genome sequencing to characterize monogenic and polygenic contributions in patients hospitalized with early-onset myocardial infarction. Circulation. 2019;139:1593–602.
pubmed: 30586733 pmcid: 6433484
Mabuchi H, Nohara A, Noguchi T, Kobayashi J, Kawashiri MA, Tada H, et al. Molecular genetic epidemiology of homozygous familial hypercholesterolemia in the Hokuriku district of Japan. Atherosclerosis. 2011;214:404–7.
pubmed: 21146822
Louter L, Defesche J, Roeters van Lennep J. Cascade screening for familial hypercholesterolemia: practical consequences. Atheroscler Suppl. 2017;30:77–85.
pubmed: 29096865
Nomura A, Tada H, Okada H, Nohara A, Ishikawa H, Yoshimura K, et al. Impact of genetic testing on low-density lipoprotein cholesterol in patients with familial hypercholesterolemia (GenTLe-FH): a randomised waiting list controlled open-label study protocol. BMJ Open. 2018;8:e023636.
pubmed: 30593551 pmcid: 6318585
Tada H, Okada H, Nomura A, Yashiro S, Nohara A, Ishigaki Y, et al. Rare and deleterious mutations in ABCG5/ABCG8 genes contribute to mimicking and worsening of familial hypercholesterolemia phenotype. Circ J. 2019;83:1917–24.
pubmed: 31327807
Tada H, Nohara A, Inazu A, Sakuma N, Mabuchi H, Kawashiri MA. Sitosterolemia, hypercholesterolemia, and coronary artery disease. J Atheroscler Thromb. 2018;25:783–9.
pubmed: 30033951 pmcid: 6143779
Tada H, Okada H, Nomura A, Takamura M, Kawashiri MA. Beneficial effect of ezetimibe-atorvastatin combination therapy in patients with a mutation in ABCG5 or ABCG8 gene. Lipids Health Dis. 2020;19:3.
pubmed: 31901240 pmcid: 6942309
Stein EA, Honarpour N, Wasserman SM, Xu F, Scott R, Raal FJ. Effect of the proprotein convertase subtilisin/kexin 9 monoclonal antibody, AMG 145, in homozygous familial hypercholesterolemia. Circulation. 2013;128:2113–20.
pubmed: 24014831
Raal FJ, Hovingh GK, Blom D, Santos RD, Harada-Shiba M, Bruckert E, et al. Long-term treatment with evolocumab added to conventional drug therapy, with or without apheresis, in patients with homozygous familial hypercholesterolaemia: an interim subset analysis of the open-label TAUSSIG study. Lancet Diabetes Endocrinol. 2017;5:280–90.
pubmed: 28215937
Tada H, Kawashiri MA, Nomura A, Teramoto R, Hosomichi K, Nohara A, et al. Oligogenic familial hypercholesterolemia, LDL cholesterol, and coronary artery disease. J Clin Lipidol. 2018;12:1436–44.
pubmed: 30241732
Roden DM. Personalized medicine to treat arrhythmias. Curr Opin Pharmacol. 2014;15:61–7.
pubmed: 24721655
James CA, Calkins H. Arrhythmogenic right ventricular cardiomyopathy: progress toward personalized management. Annu Rev Med. 2019;70:1–18.
pubmed: 30355260
Goldenberg I, Moss AJ, Peterson DR, McNitt S, Zareba W, Andrews ML, et al. Risk factors for aborted cardiac arrest and sudden cardiac death in children with the congenital long-QT syndrome. Circulation. 2008;117:2184–91.
pubmed: 18427136 pmcid: 3944375
Tester DJ, Will ML, Haglund CM, Ackerman MJ. Effect of clinical phenotype on yield of long QT syndrome genetic testing. J Am Coll Cardiol. 2006;47:764–8.
pubmed: 16487842
Hayashi K, Konno T, Fujino N, Itoh H, Fujii Y, Imi-Hashida Y, et al. Impact of updated diagnostic criteria for long QT syndrome on clinical detection of diseased patients: results from a study of patients carrying gene mutations. JACC Clin Electrophysiol. 2016;2:279–87.
pubmed: 29766885
Itoh H, Crotti L, Aiba T, Spazzolini C, Denjoy I, Fressart V, et al. The genetics underlying acquired long QT syndrome: impact for genetic screening. Eur Heart J. 2016;37:1456–64.
pubmed: 26715165
Schwartz PJ, Ackerman MJ, George AL Jr., Wilde AAM. Impact of genetics on the clinical management of channelopathies. J Am Coll Cardiol. 2013;62:169–80.
pubmed: 23684683 pmcid: 3710520
Gussak I, Antzelevitch C, Wilde AAM, Powell BD, Ackerman MJ, Shen W. Congenital long QT syndrome. London: Springer; 2013.
Priori SG, Schwartz PJ, Napolitano C, Bloise R, Ronchetti E, Grillo M, et al. Risk stratification in the long-QT syndrome. N Engl J Med. 2003;348:1866–74.
pubmed: 12736279
Shimizu W, Makimoto H, Yamagata K, Kamakura T, Wada M, Miyamoto K, et al. Association of genetic and clinical aspects of congenital long QT syndrome with life-threatening arrhythmias in japanese patients. JAMA Cardiol. 2019;4:246–54.
pubmed: 30758498 pmcid: 6439560
Japanese Circulation Society. Guidelines for diagnosis and management of inherited arrhythmias. Tokyo: JCS; 2017. http://www.j-circ.or.jp/guideline/pdf/JCS2017_aonuma_h.pdf . Last accessed on 14 Apr 2020.
Barsheshet A, Dotsenko O, Goldenberg I. Genotype-specific risk stratification and management of patients with long QT syndrome. Ann Noninvasive Electrocardiol. 2013;18:499–509.
pubmed: 24206565 pmcid: 6932574
Neira V, Enriquez A, Simpson C, Baranchuk A. Update on long QT syndrome. J Cardiovasc Electrophysiol. 2019;30:3068–78.
pubmed: 31596038
Ahn J, Kim HJ, Choi JI, Lee KN, Shim J, Ahn HS, et al. Effectiveness of beta-blockers depending on the genotype of congenital long-QT syndrome: a meta-analysis. PLoS ONE. 2017;12:e0185680.
pubmed: 29059199 pmcid: 5653191
Wu JC, Garg P, Yoshida Y, Yamanaka S, Gepstein L, Hulot JS, et al. Towards precision medicine with human iPSCs for cardiac channelopathies. Circ Res. 2019;125:653–8.
pubmed: 31465267
Tanaka Y, Hayashi K, Fujino N, Konno T, Tada H, Nakanishi C, et al. Functional analysis of KCNH2 gene mutations of type 2 long QT syndrome in larval zebrafish using microscopy and electrocardiography. Heart Vessels. 2019;34:159–66.
pubmed: 30047011
Hayashi K, Teramoto R, Nomura A, Asano Y, Beerens M, Kurata Y, et al. Impact of functional studies on exome sequence variant interpretation in early-onset cardiac conduction system diseases. Cardiovasc Res. 2020. In press.
Report of the WHO/ISFC task force on the definition and classification of cardiomyopathies. Br Heart J. 1980;44:672–3.
Richardson P, McKenna W, Bristow M, Maisch B, Mautner B, O’Connell J, et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation. 1996;93:841–2.
pubmed: 8598070
Konno T, Chang S, Seidman JG, Seidman CE. Genetics of hypertrophic cardiomyopathy. Curr Opin Cardiol. 2020;25:205–9.
Konno T, Shimizu M, Ino H, Matsuyama T, Yamaguchi M, Terai H, et al. A novel missense mutation in the myosin binding protein-C gene is responsible for hypertrophic cardiomyopathy with left ventricular dysfunction and dilation in elderly patients. J Am Coll Cardiol. 2003;41:781–6.
pubmed: 12628722
Wang L, Seidman JG, Seidman CE. Narrative review: harnessing molecular genetics for the diagnosis and management of hypertrophic cardiomyopathy. Ann Intern Med. 2010;152:513–20.
pubmed: 20404382 pmcid: 3017752
Maron BJ. Clinical course and management of hypertrophic cardiomyopathy. N Engl J Med. 2018;379:655–68.
pubmed: 30110588
Marian AJ, Braunwald E. Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res. 2017;121:749–70.
pubmed: 28912181 pmcid: 5654557
Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, Charron P, et al. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J. 2014;35:2733–79.
pubmed: 25173338
Burke MA, Cook SA, Seidman JG, Seidman CE. Clinical and mechanistic insights into the genetics of cardiomyopathy. J Am Coll Cardiol. 2016;68:2871–86.
pubmed: 28007147 pmcid: 5843375
Anan R, Niimura H, Takenaka T, Hamasaki S, Tei C. Mutations in the genes for sarcomeric proteins in Japanese patients with onset sporadic hypertrophic cardiomyopathy after age 40 years. Am J Cardiol. 2007;99:1750–4.
pubmed: 17560888
Fujino N, Konno T, Hayashi K, Hodatsu A, Fujita T, Tsuda T, et al. Impact of systolic dysfunction in genotyped hypertrophic cardiomyopathy. Clin Cardiol. 2013;36:160–5.
pubmed: 23197398
Hodatsu A, Konno T, Hayashi K, Funada A, Fujita T, Nagata Y, et al. Compound heterozygosity deteriorates phenotypes of hypertrophic cardiomyopathy with founder MYBPC3 mutation: evidence from patients and zebrafish models. Am J Physiol Heart Circ Physiol. 2014;307:H1594–604.
pubmed: 25281569
Fujita T, Fujino N, Anan R, Tei C, Kubo T, Doi Y, et al. Sarcomere gene mutations are associated with increased cardiovascular events in left ventricular hypertrophy: results from multicenter registration in Japan. JACC Heart Fail. 2013;1:459–66.
pubmed: 24621997
Nomura S. Genetic and non-genetic determinants of clinical phenotypes in cardiomyopathy. J Cardiol. 2019;73:187–90.
pubmed: 30527532
Tada H, Kawashiri MA, Yamagishi M. Comprehensive genotyping in dyslipidemia: mendelian dyslipidemias caused by rare variants and Mendelian randomization studies using common variants. J Hum Genet. 2017;62:453–8.
pubmed: 28055004
Mega JL, Stitziel NO, Smith JG, Chasman DI, Caulfield M, Devlin JJ, et al. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials. Lancet. 2015;385:2264–71.
pubmed: 25748612 pmcid: 4608367
Khera AV, Emdin CA, Drake I, Natarajan P, Bick AG, Cook NR, et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N Engl J Med. 2016;375:2349–58.
pubmed: 27959714 pmcid: 5338864
Erdmann J, Kessler T, Munoz Venegas L, Schunkert H. A decade of genome-wide association studies for coronary artery disease: the challenges ahead. Cardiovasc Res. 2018;114:1241–57.
pubmed: 29617720
Nelson CP, Goel AA-Ohoo, Butterworth AS, Kanoni S, Webb TR, Marouli E, et al. Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nat Genet. 2017;49:1385–91.
pubmed: 28714975
McPherson R, Tybjaerg-Hansen A. Genetics of coronary artery disease. Circ Res. 2016;118:564–78.
pubmed: 26892958
Zuk O, Hechter E, Sunyaev SR, Lander ES. The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci USA. 2012;109:1193–8.
pubmed: 22223662
Zuk O, Schaffner SF, Samocha K, Do R, Hechter E, Kathiresan S, et al. Searching for missing heritability: designing rare variant association studies. Proc Natl Acad Sci USA. 2014;111:E455–64.
pubmed: 24443550
Do R, Stitziel NO, Won HH, Jorgensen AB, Duga S, Angelica Merlini P, et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature. 2015;518:102–6.
pubmed: 25487149
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.
pubmed: 4544753 pmcid: 4544753
Saleheen D, Natarajan P, Armean IM, Zhao W, Rasheed A, Khetarpal SA, et al. Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity. Nature. 2017;544:235–9.
pubmed: 28406212 pmcid: 5600291
Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.
pubmed: 27535533 pmcid: 5018207
Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354:1264–72.
pubmed: 16554528
Myocardial Infarction Genetics Consortium I, Stitziel NO, Won HH, Morrison AC, Peloso GM, Do R, et al. Inactivating mutations in NPC1L1 and protection from coronary heart disease. N Engl J Med. 2014;371:2072–82.
Nomura A, Won HH, Khera AV, Takeuchi F, Ito K, McCarthy S, et al. Protein-truncating variants at the cholesteryl ester transfer protein gene and risk for coronary heart disease. Circ Res. 2017;121:81–8.
pubmed: 28506971 pmcid: 5523940
Peloso GM, Nomura A, Khera AV, Chaffin M, Won HH, Ardissino D, et al. Rare protein-truncating variants in APOB, lower low-density lipoprotein cholesterol, and protection against coronary heart disease. Circ Genom Precis Med. 2019;12:e002376.
pubmed: 30939045 pmcid: 7044908
Emdin CA, Khera AV, Natarajan P, Klarin D, Won HH, Peloso GM, et al. Phenotypic characterization of genetically lowered human lipoprotein(a) levels. J Am Coll Cardiol. 2016;68:2761–72.
pubmed: 28007139 pmcid: 5328146
Tg, Hdl Working Group of the Exome Sequencing Project NHL, Blood I, Crosby J, Peloso GM, Auer PL, et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med. 2014;371:22–31.
Stitziel NO, Khera AV, Wang X, Bierhals AJ, Vourakis AC, Sperry AE, et al. ANGPTL3 deficiency and protection against coronary artery disease. J Am Coll Cardiol. 2017;69:2054–63.
pubmed: 28385496 pmcid: 5404817
Dewey FE, Gusarova V, O’Dushlaine C, Gottesman O, Trejos J, Hunt C, et al. Inactivating variants in ANGPTL4 and risk of coronary artery disease. N Engl J Med. 2016;374:1123–33.
pubmed: 26933753 pmcid: 4900689
Nioi P, Sigurdsson A, Thorleifsson G, Helgason H, Agustsdottir AB, Norddahl GL, et al. Variant ASGR1 associated with a reduced risk of coronary artery disease. N Engl J Med. 2016;374:2131–41.
pubmed: 27192541
Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372:2387–97.
pubmed: 26039521
Schwartz GG, Steg PG, Szarek M, Bhatt DA-O, Bittner VA, Diaz R, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379:2097–107.
pubmed: 30403574
Musunuru K, Kathiresan S. Genetics of common, complex coronary artery disease. Cell. 2019;177:132–45.
pubmed: 30901535
Cai T, Zhang Y, Ho YL, Link N, Sun J, Huang J, et al. Association of interleukin 6 receptor variant with cardiovascular disease effects of interleukin 6 receptor blocking therapy: a phenome-wide association study. JAMA Cardiol. 2018;3:849–57.
pubmed: 30090940 pmcid: 6233652
Rao AS, Lindholm D, Rivas MA, Knowles JW, Montgomery SB, Ingelsson E. Large-scale phenome-wide association study of PCSK9 variants demonstrates protection against ischemic stroke. Circ Genom Precis Med. 2018;11:e002162.
pubmed: 29997226 pmcid: 6050027
Trinder M, DeCastro ML, Azizi H, Cermakova L, Jackson LM, Frohlich J, et al. Ascertainment bias in the association between elevated lipoprotein(a) and familial hypercholesterolemia. J Am Coll Cardiol. 2020;75:2682–93.
pubmed: 32466883

Auteurs

Hayato Tada (H)

Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan. ht240z@sa3.so-net.ne.jp.

Noboru Fujino (N)

Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.

Akihiro Nomura (A)

Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.

Chiaki Nakanishi (C)

Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.

Kenshi Hayashi (K)

Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.

Masayuki Takamura (M)

Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.

Masa-Aki Kawashiri (MA)

Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH