CRISPR/Cas with ribonucleoprotein complexes and transiently selected telomere vectors allows highly efficient marker-free and multiple genome editing in Botrytis cinerea.


Journal

PLoS pathogens
ISSN: 1553-7374
Titre abrégé: PLoS Pathog
Pays: United States
ID NLM: 101238921

Informations de publication

Date de publication:
08 2020
Historique:
received: 11 01 2020
accepted: 10 07 2020
revised: 27 08 2020
pubmed: 18 8 2020
medline: 23 9 2020
entrez: 18 8 2020
Statut: epublish

Résumé

CRISPR/Cas has become the state-of-the-art technology for genetic manipulation in diverse organisms, enabling targeted genetic changes to be performed with unprecedented efficiency. Here we report on the first establishment of robust CRISPR/Cas editing in the important necrotrophic plant pathogen Botrytis cinerea based on the introduction of optimized Cas9-sgRNA ribonucleoprotein complexes (RNPs) into protoplasts. Editing yields were further improved by development of a novel strategy that combines RNP delivery with cotransformation of transiently stable vectors containing telomeres, which allowed temporary selection and convenient screening for marker-free editing events. We demonstrate that this approach provides superior editing rates compared to existing CRISPR/Cas-based methods in filamentous fungi, including the model plant pathogen Magnaporthe oryzae. Genome sequencing of edited strains revealed very few additional mutations and no evidence for RNP-mediated off-targeting. The high performance of telomere vector-mediated editing was demonstrated by random mutagenesis of codon 272 of the sdhB gene, a major determinant of resistance to succinate dehydrogenase inhibitor (SDHI) fungicides by in bulk replacement of the codon 272 with codons encoding all 20 amino acids. All exchanges were found at similar frequencies in the absence of selection but SDHI selection allowed the identification of novel amino acid substitutions which conferred differential resistance levels towards different SDHI fungicides. The increased efficiency and easy handling of RNP-based cotransformation is expected to accelerate molecular research in B. cinerea and other fungi.

Identifiants

pubmed: 32804988
doi: 10.1371/journal.ppat.1008326
pii: PPATHOGENS-D-20-00059
pmc: PMC7451986
doi:

Substances chimiques

Ribonucleoproteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e1008326

Déclaration de conflit d'intérêts

The authors have declared that no competing interests exist.

Références

Methods Enzymol. 2014;546:1-20
pubmed: 25398333
Plant Dis. 2014 Apr;98(4):532-539
pubmed: 30708725
Mol Ther Nucleic Acids. 2015 Nov 17;4:e264
pubmed: 26575098
Fly (Austin). 2012 Apr-Jun;6(2):80-92
pubmed: 22728672
Environ Microbiol. 2014 Jul;16(7):2253-66
pubmed: 24119086
Fungal Genet Biol. 2008 Jul;45(7):1062-74
pubmed: 18495505
Mol Plant Microbe Interact. 2012 Apr;25(4):481-95
pubmed: 22112214
Cell. 2016 Jan 14;164(1-2):29-44
pubmed: 26771484
Fungal Genet Biol. 2014 Jun;67:24-36
pubmed: 24694728
Anal Biochem. 1971 Nov;44(1):276-87
pubmed: 4943714
BMC Plant Biol. 2010 Feb 25;10:38
pubmed: 20184750
Fungal Genet Biol. 2017 Apr;101:55-60
pubmed: 28286319
Appl Environ Microbiol. 2011 May;77(9):2887-97
pubmed: 21378036
Bioinformation. 2016 Jun 15;12(3):98-104
pubmed: 28149042
Appl Environ Microbiol. 2010 Sep;76(18):6313-7
pubmed: 20656854
Fungal Genet Biol. 2018 Aug;117:21-29
pubmed: 29763675
Sci Rep. 2018 Sep 25;8(1):14355
pubmed: 30254203
Nat Biotechnol. 2018 Nov 27;:
pubmed: 30480667
Pest Manag Sci. 2014 Dec;70(12):1884-93
pubmed: 24481672
Fungal Genet Biol. 2019 Sep;130:43-53
pubmed: 31048007
Mol Ther Nucleic Acids. 2015 Mar 10;4:e232
pubmed: 25756962
ACS Synth Biol. 2016 Jul 15;5(7):754-64
pubmed: 27072635
Antimicrob Agents Chemother. 2008 Nov;52(11):3933-40
pubmed: 18779358
Bioinformatics. 2014 Aug 1;30(15):2114-20
pubmed: 24695404
Fungal Genet Biol. 2016 Apr;89:3-9
pubmed: 26365384
Appl Microbiol Biotechnol. 2014 Nov;98(22):9413-24
pubmed: 25293582
Appl Environ Microbiol. 2013 Jan;79(1):159-67
pubmed: 23087030
Mol Plant Microbe Interact. 2006 Sep;19(9):1042-50
pubmed: 16941908
Trends Plant Sci. 2006 May;11(5):247-53
pubmed: 16616579
J Chem Biol. 2014 May 28;7(4):133-41
pubmed: 25320647
Phytopathology. 2013 Sep;103(9):880-7
pubmed: 23593940
Trends Plant Sci. 2018 Jul;23(7):613-622
pubmed: 29724660
Plant Dis. 2013 Jan;97(1):118-122
pubmed: 30722271
Fungal Biol. 2018 Feb - Mar;122(2-3):131-137
pubmed: 29458716
PLoS One. 2015 Jul 15;10(7):e0133085
pubmed: 26177455
Nature. 2014 Mar 6;507(7490):62-7
pubmed: 24476820
Fungal Genet Biol. 2016 Jan;86:47-57
pubmed: 26701308
Science. 2013 Oct 4;342(6154):118-23
pubmed: 24092744
Gene. 1990 Sep 1;93(1):157-62
pubmed: 1699844
Mol Plant Pathol. 2004 Jan 1;5(1):17-27
pubmed: 20565578
Nat Biotechnol. 2015 Jan;33(1):73-80
pubmed: 25357182
Traffic. 2009 Nov;10(11):1711-21
pubmed: 19686298
Curr Opin Microbiol. 2018 Dec;46:58-64
pubmed: 29549797
ACS Synth Biol. 2019 Feb 15;8(2):445-454
pubmed: 30616338
Fungal Genet Biol. 1998 Oct;25(1):22-30
pubmed: 9806803
Bioinformatics. 2016 Oct 1;32(19):3047-8
pubmed: 27312411
Plant Dis. 2019 Jul;103(7):1577-1583
pubmed: 31082321
Fungal Biol Biotechnol. 2018 Jun 5;5:11
pubmed: 29992034
Curr Genet. 1994 Sep;26(3):251-5
pubmed: 7859308
Mol Plant Pathol. 2012 May;13(4):414-30
pubmed: 22471698
Fungal Genet Biol. 2017 Mar;100:42-51
pubmed: 28188884
Cell Discov. 2015 May 12;1:15007
pubmed: 27462408
Nat Rev Microbiol. 2009 Mar;7(3):185-95
pubmed: 19219052
Fungal Genet Biol. 2012 Jun;49(6):483-97
pubmed: 22503771
New Phytol. 2014 Jul;203(2):620-31
pubmed: 24725259
Mol Plant Pathol. 2017 Jan;18(1):75-89
pubmed: 26913498
Science. 2012 Aug 17;337(6096):816-21
pubmed: 22745249
Fungal Genet Biol. 2018 Jun;115:78-89
pubmed: 29325827
Curr Biol. 2000 Jun 29;10(13):751-7
pubmed: 10898976
Proc Natl Acad Sci U S A. 2018 Feb 27;115(9):E2040-E2047
pubmed: 29440496
Mol Gen Genet. 1987 Aug;209(1):71-7
pubmed: 3312958
Appl Environ Microbiol. 2019 Jan 23;85(3):
pubmed: 30478227
Science. 2013 Feb 15;339(6121):823-6
pubmed: 23287722
Bioinformatics. 2009 Aug 15;25(16):2078-9
pubmed: 19505943
PLoS One. 2012;7(4):e35429
pubmed: 22536383
Plant Cell. 1993 Nov;5(11):1575-90
pubmed: 8312740
Front Microbiol. 2017 Nov 30;8:2361
pubmed: 29250050
mSphere. 2017 Nov 22;2(6):
pubmed: 29202040
Science. 2013 Feb 15;339(6121):819-23
pubmed: 23287718
New Phytol. 2018 Aug;219(3):1062-1074
pubmed: 29790574
Mol Plant Pathol. 2011 Aug;12(6):564-79
pubmed: 21722295
Phytopathology. 2014 Apr;104(4):347-56
pubmed: 24168041
PLoS One. 2012;7(8):e42520
pubmed: 22912706

Auteurs

Thomas Leisen (T)

University of Kaiserslautern, Department of Biology, Kaiserslautern, Germany.

Fabian Bietz (F)

University of Kaiserslautern, Department of Biology, Kaiserslautern, Germany.

Janina Werner (J)

University of Kaiserslautern, Department of Biology, Kaiserslautern, Germany.

Alex Wegner (A)

RWTH Aachen University, Department of Plant Physiology, Aachen, Germany.

Ulrich Schaffrath (U)

RWTH Aachen University, Department of Plant Physiology, Aachen, Germany.

David Scheuring (D)

University of Kaiserslautern, Department of Biology, Kaiserslautern, Germany.

Felix Willmund (F)

University of Kaiserslautern, Department of Biology, Kaiserslautern, Germany.

Andreas Mosbach (A)

Syngenta Crop Protection AG, Stein, Switzerland.

Gabriel Scalliet (G)

Syngenta Crop Protection AG, Stein, Switzerland.

Matthias Hahn (M)

University of Kaiserslautern, Department of Biology, Kaiserslautern, Germany.

Articles similaires

Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Capsicum Disease Resistance Plant Diseases Polymorphism, Single Nucleotide Ralstonia solanacearum
Prader-Willi Syndrome Humans Angelman Syndrome CRISPR-Cas Systems Human Embryonic Stem Cells
Genome, Bacterial Virulence Phylogeny Genomics Plant Diseases

Classifications MeSH