Glucose transporters in cardiovascular system in health and disease.
AMPK
Akt
Cardiac hypertrophy
Cardiac metabolism
Diabetic cardiomyopathy
GLUT
Glucotoxicity
Heart failure
SGLT
SMIT1
Journal
Pflugers Archiv : European journal of physiology
ISSN: 1432-2013
Titre abrégé: Pflugers Arch
Pays: Germany
ID NLM: 0154720
Informations de publication
Date de publication:
09 2020
09 2020
Historique:
received:
24
06
2020
accepted:
31
07
2020
revised:
28
07
2020
pubmed:
19
8
2020
medline:
1
7
2021
entrez:
19
8
2020
Statut:
ppublish
Résumé
Glucose transporters are essential for the heart to sustain its function. Due to its nature as a high energy-consuming organ, the heart needs to catabolize a huge quantity of metabolic substrates. For optimized energy production, the healthy heart constantly switches between various metabolites in accordance with substrate availability and hormonal status. This metabolic flexibility is essential for the maintenance of cardiac function. Glucose is part of the main substrates catabolized by the heart and its use is fine-tuned via complex molecular mechanisms that include the regulation of the glucose transporters GLUTs, mainly GLUT4 and GLUT1. Besides GLUTs, glucose can also be transported by cotransporters of the sodium-glucose cotransporter (SGLT) (SLC5 gene) family, in which SGLT1 and SMIT1 were shown to be expressed in the heart. This SGLT-mediated uptake does not seem to be directly linked to energy production but is rather associated with intracellular signalling triggering important processes such as the production of reactive oxygen species. Glucose transport is markedly affected in cardiac diseases such as cardiac hypertrophy, diabetic cardiomyopathy and heart failure. These alterations are not only fingerprints of these diseases but are involved in their onset and progression. The present review will depict the importance of glucose transport in healthy and diseased heart, as well as proposed therapies targeting glucose transporters.
Identifiants
pubmed: 32809061
doi: 10.1007/s00424-020-02444-8
pii: 10.1007/s00424-020-02444-8
doi:
Substances chimiques
Glucose Transport Proteins, Facilitative
0
Sodium-Glucose Transport Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1385-1399Références
Abel ED, Kaulbach HC, Tian R, Hopkins JC, Duffy J, Doetschman T, Minnemann T, Boers ME, Hadro E, Oberste-Berghaus C, Quist W, Lowell BB, Ingwall JS, Kahn BB (1999) Cardiac hypertrophy with preserved contractile function after selective deletion of GLUT4 from the heart. J Clin Invest 104:1703–1714. https://doi.org/10.1172/JCI7605
doi: 10.1172/JCI7605
pubmed: 10606624
pmcid: 409881
Aerni-Flessner L, Abi-Jaoude M, Koenig A, Payne M, Hruz PW (2012) GLUT4, GLUT1, and GLUT8 are the dominant GLUT transcripts expressed in the murine left ventricle. Cardiovasc Diabetol 11:63. https://doi.org/10.1186/1475-2840-11-63
doi: 10.1186/1475-2840-11-63
pubmed: 22681646
pmcid: 3416696
Alpert E, Gruzman A, Riahi Y, Blejter R, Aharoni P, Weisinger G, Eckel J, Kaiser N, Sasson S (2005) Delayed autoregulation of glucose transport in vascular endothelial cells. Diabetologia 48:752–755. https://doi.org/10.1007/s00125-005-1681-y
doi: 10.1007/s00125-005-1681-y
pubmed: 15739115
An D, Kewalramani G, Qi D, Pulinilkunnil T, Ghosh S, Abrahani A, Wambolt R, Allard M, Innis SM, Rodrigues B (2005) beta-Agonist stimulation produces changes in cardiac AMPK and coronary lumen LPL only during increased workload. Am J Physiol 288:E1120–E1127. https://doi.org/10.1152/ajpendo.00588.2004
doi: 10.1152/ajpendo.00588.2004
Arias EB, Zheng X, Agrawal S, Cartee GD (2019) Whole body glucoregulation and tissue-specific glucose uptake in a novel Akt substrate of 160 kDa knockout rat model. PLoS One 14:e0216236. https://doi.org/10.1371/journal.pone.0216236
doi: 10.1371/journal.pone.0216236
pubmed: 31034517
pmcid: 6488193
Armoni M, Harel C, Bar-Yoseph F, Milo S, Karnieli E (2005) Free fatty acids repress the GLUT4 gene expression in cardiac muscle via novel response elements. J Biol Chem 280:34786–34795. https://doi.org/10.1074/jbc.M502740200
doi: 10.1074/jbc.M502740200
pubmed: 16096283
Aroor AR, Mandavia CH, Sowers JR (2012) Insulin resistance and heart failure: molecular mechanisms. Heart Fail Clin 8:609–617. https://doi.org/10.1016/j.hfc.2012.06.005
doi: 10.1016/j.hfc.2012.06.005
pubmed: 22999243
pmcid: 3457065
Baartscheer A, Schumacher CA, Wust RC, Fiolet JW, Stienen GJ, Coronel R, Zuurbier CJ (2017) Empagliflozin decreases myocardial cytoplasmic Na(+) through inhibition of the cardiac Na(+)/H(+) exchanger in rats and rabbits. Diabetologia 60:568–573. https://doi.org/10.1007/s00125-016-4134-x
doi: 10.1007/s00125-016-4134-x
pubmed: 27752710
Bagul PK, Katare PB, Bugga P, Dinda AK, Banerjee SK (2018) SIRT-3 modulation by resveratrol improves mitochondrial oxidative phosphorylation in diabetic heart through deacetylation of TFAM. Cells 7. doi: https://doi.org/10.3390/cells7120235
Balteau M, Van Steenbergen A, Timmermans AD, Dessy C, Behets-Wydemans G, Tajeddine N, Castanares-Zapatero D, Gilon P, Vanoverschelde JL, Horman S, Hue L, Bertrand L, Beauloye C (2014) AMPK activation by glucagon-like peptide-1 prevents NADPH oxidase activation induced by hyperglycemia in adult cardiomyocytes. Am J Physiol Heart Circ Physiol 307:H1120–H1133. https://doi.org/10.1152/ajpheart.00210.2014
doi: 10.1152/ajpheart.00210.2014
pubmed: 25128166
Banerjee I, Fuseler JW, Price RL, Borg TK, Baudino TA (2007) Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. Am J Physiol Heart Circ Physiol 293:H1883–H1891. https://doi.org/10.1152/ajpheart.00514.2007
doi: 10.1152/ajpheart.00514.2007
pubmed: 17604329
Banerjee SK, McGaffin KR, Pastor-Soler NM, Ahmad F (2009) SGLT1 is a novel cardiac glucose transporter that is perturbed in disease states. Cardiovasc Res 84:111–118. https://doi.org/10.1093/cvr/cvp190
doi: 10.1093/cvr/cvp190
pubmed: 19509029
pmcid: 2741348
Barbeau PA, Houad JM, Huber JS, Paglialunga S, Snook LA, Herbst EAF, Dennis K, Simpson JA, Holloway GP (2020) Ablating the Rab-GTPase activating protein TBC1D1 predisposes rats to high-fat diet-induced cardiomyopathy. J Physiol 598:683–697. https://doi.org/10.1113/JP279042
doi: 10.1113/JP279042
pubmed: 31845331
Beauloye C, Bertrand L, Horman S, Hue L (2011) AMPK activation, a preventive therapeutic target in the transition from cardiac injury to heart failure. Cardiovasc Res 90:224–233. https://doi.org/10.1093/cvr/cvr034
doi: 10.1093/cvr/cvr034
pubmed: 21285292
Beauloye C, Marsin AS, Bertrand L, Vanoverschelde JL, Rider MH, Hue L (2002) The stimulation of heart glycolysis by increased workload does not require AMP-activated protein kinase but a wortmannin-sensitive mechanism. FEBS Lett 531:324–328. https://doi.org/10.1016/s0014-5793(02)03552-4
doi: 10.1016/s0014-5793(02)03552-4
pubmed: 12417335
Bertrand L, Ginion A, Beauloye C, Hebert AD, Guigas B, Hue L, Vanoverschelde JL (2006) AMPK activation restores the stimulation of glucose uptake in an in vitro model of insulin-resistant cardiomyocytes via the activation of protein kinase B. Am J Physiol Heart Circ Physiol 291:H239–H250. https://doi.org/10.1152/ajpheart.01269.2005
doi: 10.1152/ajpheart.01269.2005
pubmed: 16489105
Bertrand L, Horman S, Beauloye C, Vanoverschelde JL (2008) Insulin signalling in the heart. Cardiovasc Res 79:238–248. https://doi.org/10.1093/cvr/cvn093
doi: 10.1093/cvr/cvn093
pubmed: 18390897
Bowman PRT, Smith GL, Gould GW (2019) GLUT4 expression and glucose transport in human induced pluripotent stem cell-derived cardiomyocytes. PLoS One 14:e0217885. https://doi.org/10.1371/journal.pone.0217885
doi: 10.1371/journal.pone.0217885
pubmed: 31344028
pmcid: 6657831
Bugger H, Abel ED (2009) Rodent models of diabetic cardiomyopathy. Dis Model Mech 2:454–466. https://doi.org/10.1242/dmm.001941
doi: 10.1242/dmm.001941
pubmed: 19726805
Bugger H, Abel ED (2014) Molecular mechanisms of diabetic cardiomyopathy. Diabetologia 57:660–671. https://doi.org/10.1007/s00125-014-3171-6
doi: 10.1007/s00125-014-3171-6
pubmed: 24477973
pmcid: 3969857
Calvert JW, Gundewar S, Jha S, Greer JJ, Bestermann WH, Tian R, Lefer DJ (2008) Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes 57:696–705. https://doi.org/10.2337/db07-1098
doi: 10.2337/db07-1098
pubmed: 18083782
Carvajal K, Zarrinpashneh E, Szarszoi O, Joubert F, Athea Y, Mateo P, Gillet B, Vaulont S, Viollet B, Bigard X, Bertrand L, Ventura-Clapier R, Hoerter JA (2007) Dual cardiac contractile effects of the alpha2-AMPK deletion in low-flow ischemia and reperfusion. Am J Physiol Heart Circ Physiol 292:H3136–H3147. https://doi.org/10.1152/ajpheart.00683.2006
doi: 10.1152/ajpheart.00683.2006
pubmed: 17337600
Chang W, Zhang M, Li J, Meng Z, Wei S, Du H, Chen L, Hatch GM (2013) Berberine improves insulin resistance in cardiomyocytes via activation of 5’-adenosine monophosphate-activated protein kinase. Metabolism 62:1159–1167. https://doi.org/10.1016/j.metabol.2013.02.007
doi: 10.1016/j.metabol.2013.02.007
pubmed: 23537779
Chen S, Wasserman DH, MacKintosh C, Sakamoto K (2011) Mice with AS160/TBC1D4-Thr649Ala knockin mutation are glucose intolerant with reduced insulin sensitivity and altered GLUT4 trafficking. Cell Metab 13:68–79. https://doi.org/10.1016/j.cmet.2010.12.005
doi: 10.1016/j.cmet.2010.12.005
pubmed: 21195350
pmcid: 3081066
Chiu TT, Jensen TE, Sylow L, Richter EA, Klip A (2011) Rac1 signalling towards GLUT4/glucose uptake in skeletal muscle. Cell Signal 23:1546–1554. https://doi.org/10.1016/j.cellsig.2011.05.022
doi: 10.1016/j.cellsig.2011.05.022
pubmed: 21683139
Collins HE, Chatham JC (1866) Regulation of cardiac O-GlcNAcylation: more than just nutrient availability. Biochim Biophys Acta Mol basis Dis 2020:165712. https://doi.org/10.1016/j.bbadis.2020.165712
doi: 10.1016/j.bbadis.2020.165712
Connelly KA, Zhang Y, Desjardins JF, Thai K, Gilbert RE (2018) Dual inhibition of sodium-glucose linked cotransporters 1 and 2 exacerbates cardiac dysfunction following experimental myocardial infarction. Cardiovasc Diabetol 17:99. https://doi.org/10.1186/s12933-018-0741-9
doi: 10.1186/s12933-018-0741-9
pubmed: 29981571
pmcid: 6035399
Cook SA, Varela-Carver A, Mongillo M, Kleinert C, Khan MT, Leccisotti L, Strickland N, Matsui T, Das S, Rosenzweig A, Punjabi P, Camici PG (2010) Abnormal myocardial insulin signalling in type 2 diabetes and left-ventricular dysfunction. Eur Heart J 31:100–111. https://doi.org/10.1093/eurheartj/ehp396
doi: 10.1093/eurheartj/ehp396
pubmed: 19797329
Cox PJ, Kirk T, Ashmore T, Willerton K, Evans R, Smith A, Murray AJ, Stubbs B, West J, McLure SW, King MT, Dodd MS, Holloway C, Neubauer S, Drawer S, Veech RL, Griffin JL, Clarke K (2016) Nutritional ketosis alters fuel preference and thereby endurance performance in athletes. Cell Metab 24:256–268. https://doi.org/10.1016/j.cmet.2016.07.010
doi: 10.1016/j.cmet.2016.07.010
Crisafulli A, Pagliaro P, Roberto S, Cugusi L, Mercuro G, Lazou A, Beauloye C, Bertrand L, Hausenloy DJ, Aragno M, Penna C (2020) Diabetic cardiomyopathy and ischemic heart disease: prevention and therapy by exercise and conditioning. Int J Mol Sci 21. https://doi.org/10.3390/ijms21082896
De Blasio MJ, Huynh K, Qin C, Rosli S, Kiriazis H, Ayer A, Cemerlang N, Stocker R, Du XJ, McMullen JR, Ritchie RH (2015) Therapeutic targeting of oxidative stress with coenzyme Q10 counteracts exaggerated diabetic cardiomyopathy in a mouse model of diabetes with diminished PI3K(p110alpha) signaling. Free Radic Biol Med 87:137–147. https://doi.org/10.1016/j.freeradbiomed.2015.04.028
doi: 10.1016/j.freeradbiomed.2015.04.028
pubmed: 25937176
DeBosch B, Sambandam N, Weinheimer C, Courtois M, Muslin AJ (2006) Akt2 regulates cardiac metabolism and cardiomyocyte survival. J Biol Chem 281:32841–32851. https://doi.org/10.1074/jbc.M513087200
doi: 10.1074/jbc.M513087200
pubmed: 16950770
pmcid: 2724003
Dirkx E, Schwenk RW, Coumans WA, Hoebers N, Angin Y, Viollet B, Bonen A, van Eys GJ, Glatz JF, Luiken JJ (2012) Protein kinase D1 is essential for contraction-induced glucose uptake but is not involved in fatty acid uptake into cardiomyocytes. J Biol Chem 287:5871–5881. https://doi.org/10.1074/jbc.M111.281881
doi: 10.1074/jbc.M111.281881
pubmed: 22158620
Doenst T, Taegtmeyer H (1999) Alpha-adrenergic stimulation mediates glucose uptake through phosphatidylinositol 3-kinase in rat heart. Circ Res 84:467–474. https://doi.org/10.1161/01.res.84.4.467
doi: 10.1161/01.res.84.4.467
pubmed: 10066682
Ducheix S, Magre J, Cariou B, Prieur X (2018) Chronic O-GlcNAcylation and diabetic cardiomyopathy: the bitterness of glucose. Front Endocrinol (Lausanne) 9:642. https://doi.org/10.3389/fendo.2018.00642
doi: 10.3389/fendo.2018.00642
Egert S, Nguyen N, Brosius FC 3rd, Schwaiger M (1997) Effects of wortmannin on insulin- and ischemia-induced stimulation of GLUT4 translocation and FDG uptake in perfused rat hearts. Cardiovasc Res 35:283–293. https://doi.org/10.1016/s0008-6363(97)00133-8
doi: 10.1016/s0008-6363(97)00133-8
pubmed: 9349391
Egert S, Nguyen N, Schwaiger M (1999) Contribution of alpha-adrenergic and beta-adrenergic stimulation to ischemia-induced glucose transporter (GLUT) 4 and GLUT1 translocation in the isolated perfused rat heart. Circ Res 84:1407–1415. https://doi.org/10.1161/01.res.84.12.1407
doi: 10.1161/01.res.84.12.1407
pubmed: 10381893
El-Daly M, Pulakazhi Venu VK, Saifeddine M, Mihara K, Kang S, Fedak PWM, Alston LA, Hirota SA, Ding H, Triggle CR, Hollenberg MD (2018) Hyperglycaemic impairment of PAR2-mediated vasodilation: prevention by inhibition of aortic endothelial sodium-glucose-co-Transporter-2 and minimizing oxidative stress. Vasc Pharmacol 109:56–71. https://doi.org/10.1016/j.vph.2018.06.006
doi: 10.1016/j.vph.2018.06.006
Facundo HT, Brainard RE, Watson LJ, Ngoh GA, Hamid T, Prabhu SD, Jones SP (2012) O-GlcNAc signaling is essential for NFAT-mediated transcriptional reprogramming during cardiomyocyte hypertrophy. Am J Physiol Heart Circ Physiol 302:H2122–H2130. https://doi.org/10.1152/ajpheart.00775.2011
doi: 10.1152/ajpheart.00775.2011
pubmed: 22408028
pmcid: 3362113
Ferron M, Denis M, Persello A, Rathagirishnan R, Lauzier B (2018) Protein O-GlcNAcylation in cardiac pathologies: past, present, future. Front Endocrinol (Lausanne) 9:819. https://doi.org/10.3389/fendo.2018.00819
doi: 10.3389/fendo.2018.00819
Fiaschi T, Magherini F, Gamberi T, Lucchese G, Faggian G, Modesti A, Modesti PA (2014) Hyperglycemia and angiotensin II cooperate to enhance collagen I deposition by cardiac fibroblasts through a ROS-STAT3-dependent mechanism. Biochim Biophys Acta 1843:2603–2610. https://doi.org/10.1016/j.bbamcr.2014.07.009
doi: 10.1016/j.bbamcr.2014.07.009
pubmed: 25072659
Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B (2014) Metformin: from mechanisms of action to therapies. Cell Metab 20:953–966. https://doi.org/10.1016/j.cmet.2014.09.018
doi: 10.1016/j.cmet.2014.09.018
pubmed: 25456737
Frangogiannis NG (2019) Cardiac fibrosis: cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Asp Med 65:70–99. https://doi.org/10.1016/j.mam.2018.07.001
doi: 10.1016/j.mam.2018.07.001
Fukushima A, Lopaschuk GD (2016) Acetylation control of cardiac fatty acid beta-oxidation and energy metabolism in obesity, diabetes, and heart failure. Biochim Biophys Acta 1862:2211–2220. https://doi.org/10.1016/j.bbadis.2016.07.020
doi: 10.1016/j.bbadis.2016.07.020
pubmed: 27479696
Gaudreault N, Scriven DR, Laher I, Moore ED (2008) Subcellular characterization of glucose uptake in coronary endothelial cells. Microvasc Res 75:73–82. https://doi.org/10.1016/j.mvr.2007.04.006
doi: 10.1016/j.mvr.2007.04.006
pubmed: 17531273
Gaudreault N, Scriven DR, Moore ED (2004) Characterisation of glucose transporters in the intact coronary artery endothelium in rats: GLUT-2 upregulated by long-term hyperglycaemia. Diabetologia 47:2081–2092. https://doi.org/10.1007/s00125-004-1583-4
doi: 10.1007/s00125-004-1583-4
pubmed: 15662550
Gelinas R, Dontaine J, Horman S, Beauloye C, Bultot L, Bertrand L (2018) AMP-activated protein kinase and O-GlcNAcylation, two partners tightly connected to regulate key cellular processes. Front Endocrinol (Lausanne) 9:519. https://doi.org/10.3389/fendo.2018.00519
doi: 10.3389/fendo.2018.00519
Gelinas R, Mailleux F, Dontaine J, Bultot L, Demeulder B, Ginion A, Daskalopoulos EP, Esfahani H, Dubois-Deruy E, Lauzier B, Gauthier C, Olson AK, Bouchard B, Des Rosiers C, Viollet B, Sakamoto K, Balligand JL, Vanoverschelde JL, Beauloye C, Horman S, Bertrand L (2018) AMPK activation counteracts cardiac hypertrophy by reducing O-GlcNAcylation. Nat Commun 9:374. https://doi.org/10.1038/s41467-017-02795-4
doi: 10.1038/s41467-017-02795-4
pubmed: 29371602
pmcid: 5785516
Ginion A, Auquier J, Benton CR, Mouton C, Vanoverschelde JL, Hue L, Horman S, Beauloye C, Bertrand L (2011) Inhibition of the mTOR/p70S6K pathway is not involved in the insulin-sensitizing effect of AMPK on cardiac glucose uptake. Am J Physiol Heart Circ Physiol 301:H469–H477. https://doi.org/10.1152/ajpheart.00986.2010
doi: 10.1152/ajpheart.00986.2010
pubmed: 21602475
Gorski DJ, Petz A, Reichert C, Twarock S, Grandoch M, Fischer JW (2019) Cardiac fibroblast activation and hyaluronan synthesis in response to hyperglycemia and diet-induced insulin resistance. Sci Rep 9:1827. https://doi.org/10.1038/s41598-018-36140-6
doi: 10.1038/s41598-018-36140-6
pubmed: 30755628
pmcid: 6372628
Gray S, Kim JK (2011) New insights into insulin resistance in the diabetic heart. Trends Endocrinol Metab 22:394–403. https://doi.org/10.1016/j.tem.2011.05.001
doi: 10.1016/j.tem.2011.05.001
pubmed: 21680199
pmcid: 3183400
Han Y, Cho YE, Ayon R, Guo R, Youssef KD, Pan M, Dai A, Yuan JX, Makino A (2015) SGLT inhibitors attenuate NO-dependent vascular relaxation in the pulmonary artery but not in the coronary artery. Am J Phys Lung Cell Mol Phys 309:L1027–L1036. https://doi.org/10.1152/ajplung.00167.2015
doi: 10.1152/ajplung.00167.2015
Hartmann T, Overhagen S, Ouwens DM, Raschke S, Wohlfart P, Tennagels N, Wronkowitz N, Eckel J (2016) Effect of the long-acting insulin analogues glargine and degludec on cardiomyocyte cell signalling and function. Cardiovasc Diabetol 15:96. https://doi.org/10.1186/s12933-016-0410-9
doi: 10.1186/s12933-016-0410-9
pubmed: 27422524
pmcid: 4946153
Heather LC, Pates KM, Atherton HJ, Cole MA, Ball DR, Evans RD, Glatz JF, Luiken JJ, Griffin JL, Clarke K (2013) Differential translocation of the fatty acid transporter, FAT/CD36, and the glucose transporter, GLUT4, coordinates changes in cardiac substrate metabolism during ischemia and reperfusion. Circ Heart Fail 6:1058–1066. https://doi.org/10.1161/CIRCHEARTFAILURE.112.000342
doi: 10.1161/CIRCHEARTFAILURE.112.000342
pubmed: 23940308
Heilig CW, Saunders T, Brosius FC 3rd, Moley K, Heilig K, Baggs R, Guo L, Conner D (2003) Glucose transporter-1-deficient mice exhibit impaired development and deformities that are similar to diabetic embryopathy. Proc Natl Acad Sci U S A 100:15613–15618. https://doi.org/10.1073/pnas.2536196100
doi: 10.1073/pnas.2536196100
pubmed: 14673082
pmcid: 307616
Heitmeier MR, Payne MA, Weinheimer C, Kovacs A, Hresko RC, Jay PY, Hruz PW (2018) Metabolic and cardiac adaptation to chronic pharmacologic blockade of facilitative glucose transport in murine dilated cardiomyopathy and myocardial ischemia. Sci Rep 8:6475. https://doi.org/10.1038/s41598-018-24867-1
doi: 10.1038/s41598-018-24867-1
pubmed: 29691457
pmcid: 5915485
Hirsch E, Costa C, Ciraolo E (2007) Phosphoinositide 3-kinases as a common platform for multi-hormone signaling. J Endocrinol 194:243–256. https://doi.org/10.1677/JOE-07-0097
doi: 10.1677/JOE-07-0097
pubmed: 17641274
Horman S, Beauloye C, Vanoverschelde JL, Bertrand L (2012) AMP-activated protein kinase in the control of cardiac metabolism and remodeling. Curr Heart Fail Rep 9:164–173. https://doi.org/10.1007/s11897-012-0102-z
doi: 10.1007/s11897-012-0102-z
pubmed: 22767403
Hue L, Taegtmeyer H (2009) The Randle cycle revisited: a new head for an old hat. Am J Physiol 297:E578–E591. https://doi.org/10.1152/ajpendo.00093.2009
doi: 10.1152/ajpendo.00093.2009
Jaswal JS, Keung W, Wang W, Ussher JR, Lopaschuk GD (2011) Targeting fatty acid and carbohydrate oxidation--a novel therapeutic intervention in the ischemic and failing heart. Biochim Biophys Acta 1813:1333–1350. https://doi.org/10.1016/j.bbamcr.2011.01.015
doi: 10.1016/j.bbamcr.2011.01.015
pubmed: 21256164
JeBailey L, Rudich A, Huang X, Di Ciano-Oliveira C, Kapus A, Klip A (2004) Skeletal muscle cells and adipocytes differ in their reliance on TC10 and Rac for insulin-induced actin remodeling. Mol Endocrinol 18:359–372. https://doi.org/10.1210/me.2003-0294
doi: 10.1210/me.2003-0294
pubmed: 14615606
Jimenez-Amilburu V, Jong-Raadsen S, Bakkers J, Spaink HP, Marin-Juez R (2015) GLUT12 deficiency during early development results in heart failure and a diabetic phenotype in zebrafish. J Endocrinol 224:1–15. https://doi.org/10.1530/JOE-14-0539
doi: 10.1530/JOE-14-0539
pubmed: 25326603
Jin X, Yi L, Chen ML, Chen CY, Chang H, Zhang T, Wang L, Zhu JD, Zhang QY, Mi MT (2013) Delphinidin-3-glucoside protects against oxidized low-density lipoprotein-induced mitochondrial dysfunction in vascular endothelial cells via the sodium-dependent glucose transporter SGLT1. PLoS One 8:e68617. https://doi.org/10.1371/journal.pone.0068617
doi: 10.1371/journal.pone.0068617
pubmed: 23874689
pmcid: 3715513
Karlstaedt A, Khanna R, Thangam M, Taegtmeyer H (2020) Glucose 6-phosphate accumulates via phosphoglucose isomerase inhibition in heart muscle. Circ Res 126:60–74. https://doi.org/10.1161/CIRCRESAHA.119.315180
doi: 10.1161/CIRCRESAHA.119.315180
pubmed: 31698999
Kato T, Niizuma S, Inuzuka Y, Kawashima T, Okuda J, Tamaki Y, Iwanaga Y, Narazaki M, Matsuda T, Soga T, Kita T, Kimura T, Shioi T (2010) Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure. Circ Heart Fail 3:420–430. https://doi.org/10.1161/CIRCHEARTFAILURE.109.888479
doi: 10.1161/CIRCHEARTFAILURE.109.888479
pubmed: 20176713
Khemais-Benkhiat S, Belcastro E, Idris-Khodja N, Park SH, Amoura L, Abbas M, Auger C, Kessler L, Mayoux E, Toti F, Schini-Kerth VB (2020) Angiotensin II-induced redox-sensitive SGLT1 and 2 expression promotes high glucose-induced endothelial cell senescence. J Cell Mol Med 24:2109–2122. https://doi.org/10.1111/jcmm.14233
doi: 10.1111/jcmm.14233
pubmed: 30929316
Kim AS, Miller EJ, Wright TM, Li J, Qi D, Atsina K, Zaha V, Sakamoto K, Young LH (2011) A small molecule AMPK activator protects the heart against ischemia-reperfusion injury. J Mol Cell Cardiol 51:24–32. https://doi.org/10.1016/j.yjmcc.2011.03.003
doi: 10.1016/j.yjmcc.2011.03.003
pubmed: 21402077
pmcid: 4005884
Kodde IF, van der Stok J, Smolenski RT, de Jong JW (2007) Metabolic and genetic regulation of cardiac energy substrate preference. Comp Biochem Physiol A Mol Integr Physiol 146:26–39. https://doi.org/10.1016/j.cbpa.2006.09.014
doi: 10.1016/j.cbpa.2006.09.014
pubmed: 17081788
Kolwicz SC Jr, Olson DP, Marney LC, Garcia-Menendez L, Synovec RE, Tian R (2012) Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy. Circ Res 111:728–738. https://doi.org/10.1161/CIRCRESAHA.112.268128
doi: 10.1161/CIRCRESAHA.112.268128
pubmed: 22730442
pmcid: 3434870
Kolwicz SC Jr, Purohit S, Tian R (2013) Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res 113:603–616. https://doi.org/10.1161/CIRCRESAHA.113.302095
doi: 10.1161/CIRCRESAHA.113.302095
pubmed: 23948585
Kong P, Christia P, Frangogiannis NG (2014) The pathogenesis of cardiac fibrosis. Cell Mol Life Sci 71:549–574. https://doi.org/10.1007/s00018-013-1349-6
doi: 10.1007/s00018-013-1349-6
pubmed: 23649149
Kramer HF, Witczak CA, Fujii N, Jessen N, Taylor EB, Arnolds DE, Sakamoto K, Hirshman MF, Goodyear LJ (2006) Distinct signals regulate AS160 phosphorylation in response to insulin, AICAR, and contraction in mouse skeletal muscle. Diabetes 55:2067–2076. https://doi.org/10.2337/db06-0150
doi: 10.2337/db06-0150
pubmed: 16804077
Kudo N, Barr AJ, Barr RL, Desai S, Lopaschuk GD (1995) High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5’-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem 270:17513–17520. https://doi.org/10.1074/jbc.270.29.17513
doi: 10.1074/jbc.270.29.17513
pubmed: 7615556
Lee YM, Lee JO, Jung JH, Kim JH, Park SH, Park JM, Kim EK, Suh PG, Kim HS (2008) Retinoic acid leads to cytoskeletal rearrangement through AMPK-Rac1 and stimulates glucose uptake through AMPK-p38 MAPK in skeletal muscle cells. J Biol Chem 283:33969–33974. https://doi.org/10.1074/jbc.M804469200
doi: 10.1074/jbc.M804469200
pubmed: 18927084
pmcid: 2662220
Li Z, Agrawal V, Ramratnam M, Sharma RK, D’Auria S, Sincoular A, Jakubiak M, Music ML, Kutschke WJ, Huang XN, Gifford L, Ahmad F (2019) Cardiac sodium-dependent glucose cotransporter 1 is a novel mediator of ischaemia/reperfusion injury. Cardiovasc Res 115:1646–1658. https://doi.org/10.1093/cvr/cvz037
doi: 10.1093/cvr/cvz037
pubmed: 30715251
Liao R, Jain M, Cui L, D’Agostino J, Aiello F, Luptak I, Ngoy S, Mortensen RM, Tian R (2002) Cardiac-specific overexpression of GLUT1 prevents the development of heart failure attributable to pressure overload in mice. Circulation 106:2125–2131. https://doi.org/10.1161/01.cir.0000034049.61181.f3
doi: 10.1161/01.cir.0000034049.61181.f3
pubmed: 12379584
Lopaschuk GD, Ussher JR (2016) Evolving concepts of myocardial energy metabolism: more than just fats and carbohydrates. Circ Res 119:1173–1176. https://doi.org/10.1161/CIRCRESAHA.116.310078
doi: 10.1161/CIRCRESAHA.116.310078
pubmed: 28051784
Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258. https://doi.org/10.1152/physrev.00015.2009
doi: 10.1152/physrev.00015.2009
pubmed: 20086077
Luiken JJ, Coort SL, Willems J, Coumans WA, Bonen A, van der Vusse GJ, Glatz JF (2003) Contraction-induced fatty acid translocase/CD36 translocation in rat cardiac myocytes is mediated through AMP-activated protein kinase signaling. Diabetes 52:1627–1634. https://doi.org/10.2337/diabetes.52.7.1627
doi: 10.2337/diabetes.52.7.1627
pubmed: 12829625
Lunde IG, Aronsen JM, Kvaloy H, Qvigstad E, Sjaastad I, Tonnessen T, Christensen G, Gronning-Wang LM, Carlson CR (2012) Cardiac O-GlcNAc signaling is increased in hypertrophy and heart failure. Physiol Genomics 44:162–172. https://doi.org/10.1152/physiolgenomics.00016.2011
doi: 10.1152/physiolgenomics.00016.2011
pubmed: 22128088
Mailleux F, Gelinas R, Beauloye C, Horman S, Bertrand L (2016) O-GlcNAcylation, enemy or ally during cardiac hypertrophy development? Biochim Biophys Acta 1862:2232–2243. https://doi.org/10.1016/j.bbadis.2016.08.012
doi: 10.1016/j.bbadis.2016.08.012
pubmed: 27544701
Mangmool S, Denkaew T, Phosri S, Pinthong D, Parichatikanond W, Shimauchi T, Nishida M (2016) Sustained betaAR stimulation mediates cardiac insulin resistance in a PKA-dependent manner. Mol Endocrinol 30:118–132. https://doi.org/10.1210/me.2015-1201
doi: 10.1210/me.2015-1201
pubmed: 26652903
Maria Z, Campolo AR, Lacombe VA (2015) Diabetes alters the expression and translocation of the insulin-sensitive glucose transporters 4 and 8 in the atria. PLoS One 10:e0146033. https://doi.org/10.1371/journal.pone.0146033
doi: 10.1371/journal.pone.0146033
pubmed: 26720696
pmcid: 4697822
Marsin AS, Bertrand L, Rider MH, Deprez J, Beauloye C, Vincent MF, Van den Berghe G, Carling D, Hue L (2000) Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr Biol 10:1247–1255. https://doi.org/10.1016/s0960-9822(00)00742-9
doi: 10.1016/s0960-9822(00)00742-9
pubmed: 11069105
Matsushita N, Ishida N, Ibi M, Saito M, Sanbe A, Shimojo H, Suzuki S, Koepsell H, Takeishi Y, Morino Y, Taira E, Sawa Y, Hirose M (2018) Chronic pressure overload induces cardiac hypertrophy and fibrosis via increases in SGLT1 and IL-18 gene expression in mice. Int Heart J 59:1123–1133. https://doi.org/10.1536/ihj.17-565
doi: 10.1536/ihj.17-565
pubmed: 30101852
McMurray JJV, Solomon SD, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Belohlavek J, Bohm M, Chiang CE, Chopra VK, de Boer RA, Desai AS, Diez M, Drozdz J, Dukat A, Ge J, Howlett JG, Katova T, Kitakaze M, Ljungman CEA, Merkely B, Nicolau JC, O’Meara E, Petrie MC, Vinh PN, Schou M, Tereshchenko S, Verma S, Held C, DeMets DL, Docherty KF, Jhund PS, Bengtsson O, Sjostrand M, Langkilde AM, Committees D-HT, Investigators (2019) Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 381:1995–2008. https://doi.org/10.1056/NEJMoa1911303
doi: 10.1056/NEJMoa1911303
pubmed: 31535829
McNulty PH, Sinusas AJ, Shi CQ, Dione D, Young LH, Cline GC, Shulman GI (1996) Glucose metabolism distal to a critical coronary stenosis in a canine model of low-flow myocardial ischemia. J Clin Invest 98:62–69. https://doi.org/10.1172/JCI118778
doi: 10.1172/JCI118778
pubmed: 8690805
pmcid: 507401
Montessuit C, Papageorgiou I, Lerch R (2008) Nuclear receptor agonists improve insulin responsiveness in cultured cardiomyocytes through enhanced signaling and preserved cytoskeletal architecture. Endocrinology 149:1064–1074. https://doi.org/10.1210/en.2007-0656
doi: 10.1210/en.2007-0656
pubmed: 18063688
Montessuit C, Papageorgiou I, Remondino-Muller A, Tardy I, Lerch R (1998) Post-ischemic stimulation of 2-deoxyglucose uptake in rat myocardium: role of translocation of Glut-4. J Mol Cell Cardiol 30:393–403. https://doi.org/10.1006/jmcc.1997.0602
doi: 10.1006/jmcc.1997.0602
pubmed: 9515016
Montessuit C, Thorburn A (1999) Transcriptional activation of the glucose transporter GLUT1 in ventricular cardiac myocytes by hypertrophic agonists. J Biol Chem 274:9006–9012. https://doi.org/10.1074/jbc.274.13.9006
doi: 10.1074/jbc.274.13.9006
pubmed: 10085148
Mora A, Davies AM, Bertrand L, Sharif I, Budas GR, Jovanovic S, Mouton V, Kahn CR, Lucocq JM, Gray GA, Jovanovic A, Alessi DR (2003) Deficiency of PDK1 in cardiac muscle results in heart failure and increased sensitivity to hypoxia. EMBO J 22:4666–4676. https://doi.org/10.1093/emboj/cdg469
doi: 10.1093/emboj/cdg469
pubmed: 12970179
pmcid: 212735
Nascimben L, Ingwall JS, Lorell BH, Pinz I, Schultz V, Tornheim K, Tian R (2004) Mechanisms for increased glycolysis in the hypertrophied rat heart. Hypertension 44:662–667. https://doi.org/10.1161/01.HYP.0000144292.69599.0c
doi: 10.1161/01.HYP.0000144292.69599.0c
pubmed: 15466668
Nielsen R, Jorsal A, Iversen P, Tolbod L, Bouchelouche K, Sorensen J, Harms HJ, Flyvbjerg A, Botker HE, Wiggers H (2018) Heart failure patients with prediabetes and newly diagnosed diabetes display abnormalities in myocardial metabolism. J Nucl Cardiol 25:169–176. https://doi.org/10.1007/s12350-016-0622-0
doi: 10.1007/s12350-016-0622-0
pubmed: 27473218
Noppe G, Dufeys C, Buchlin P, Marquet N, Castanares-Zapatero D, Balteau M, Hermida N, Bouzin C, Esfahani H, Viollet B, Bertrand L, Balligand JL, Vanoverschelde JL, Beauloye C, Horman S (2014) Reduced scar maturation and contractility lead to exaggerated left ventricular dilation after myocardial infarction in mice lacking AMPKalpha1. J Mol Cell Cardiol 74:32–43. https://doi.org/10.1016/j.yjmcc.2014.04.018
doi: 10.1016/j.yjmcc.2014.04.018
pubmed: 24805196
Olson AK, Bouchard B, Zhu WZ, Chatham JC, Des Rosiers C (2020) First characterization of glucose flux through the hexosamine biosynthesis pathway (HBP) in ex vivo mouse heart. J Biol Chem 295:2018–2033. https://doi.org/10.1074/jbc.RA119.010565
doi: 10.1074/jbc.RA119.010565
pubmed: 31915250
pmcid: 7029105
Park SY, Cho YR, Kim HJ, Higashimori T, Danton C, Lee MK, Dey A, Rothermel B, Kim YB, Kalinowski A, Russell KS, Kim JK (2005) Unraveling the temporal pattern of diet-induced insulin resistance in individual organs and cardiac dysfunction in C57BL/6 mice. Diabetes 54:3530–3540. https://doi.org/10.2337/diabetes.54.12.3530
doi: 10.2337/diabetes.54.12.3530
pubmed: 16306372
Paternostro G, Pagano D, Gnecchi-Ruscone T, Bonser RS, Camici PG (1999) Insulin resistance in patients with cardiac hypertrophy. Cardiovasc Res 42:246–253. https://doi.org/10.1016/s0008-6363(98)00233-8
doi: 10.1016/s0008-6363(98)00233-8
pubmed: 10435017
Pereira RO, Wende AR, Olsen C, Soto J, Rawlings T, Zhu Y, Anderson SM, Abel ED (2013) Inducible overexpression of GLUT1 prevents mitochondrial dysfunction and attenuates structural remodeling in pressure overload but does not prevent left ventricular dysfunction. J Am Heart Assoc 2:e000301. https://doi.org/10.1161/JAHA.113.000301
doi: 10.1161/JAHA.113.000301
pubmed: 24052497
pmcid: 3835233
Petersen MC, Shulman GI (2018) Mechanisms of insulin action and insulin resistance. Physiol Rev 98:2133–2223. https://doi.org/10.1152/physrev.00063.2017
doi: 10.1152/physrev.00063.2017
pubmed: 30067154
pmcid: 6170977
Peterzan MA, Lygate CA, Neubauer S, Rider OJ (2017) Metabolic remodeling in hypertrophied and failing myocardium: a review. Am J Physiol Heart Circ Physiol 313:H597–H616. https://doi.org/10.1152/ajpheart.00731.2016
doi: 10.1152/ajpheart.00731.2016
pubmed: 28646030
Pi X, Xie L, Patterson C (2018) Emerging roles of vascular endothelium in metabolic homeostasis. Circ Res 123:477–494. https://doi.org/10.1161/CIRCRESAHA.118.313237
doi: 10.1161/CIRCRESAHA.118.313237
pubmed: 30355249
pmcid: 6205216
Prakoso D, De Blasio MJ, Tate M, Kiriazis H, Donner DG, Qian H, Nash D, Deo M, Weeks KL, Parry LJ, Gregorevic P, McMullen JR, Ritchie RH (2020) Gene therapy targeting cardiac phosphoinositide 3-kinase (p110alpha) attenuates cardiac remodeling in type 2 diabetes. Am J Physiol Heart Circ Physiol 318:H840–H852. https://doi.org/10.1152/ajpheart.00632.2019
doi: 10.1152/ajpheart.00632.2019
pubmed: 32142359
Prata C, Zambonin L, Rizzo B, Maraldi T, Angeloni C, Vieceli Dalla Sega F, Fiorentini D, Hrelia S (2017) Glycosides from Stevia rebaudiana Bertoni possess insulin-mimetic and antioxidant activities in rat cardiac fibroblasts. Oxidative Med Cell Longev 2017:3724545. https://doi.org/10.1155/2017/3724545
doi: 10.1155/2017/3724545
Puthanveetil P, Wang F, Kewalramani G, Kim MS, Hosseini-Beheshti E, Ng N, Lau W, Pulinilkunnil T, Allard M, Abrahani A, Rodrigues B (2008) Cardiac glycogen accumulation after dexamethasone is regulated by AMPK. Am J Physiol Heart Circ Physiol 295:H1753–H1762. https://doi.org/10.1152/ajpheart.518.2008
doi: 10.1152/ajpheart.518.2008
pubmed: 18757479
Ramratnam M, Sharma RK, D’Auria S, Lee SJ, Wang D, Huang XY, Ahmad F (2014) Transgenic knockdown of cardiac sodium/glucose cotransporter 1 (SGLT1) attenuates PRKAG2 cardiomyopathy, whereas transgenic overexpression of cardiac SGLT1 causes pathologic hypertrophy and dysfunction in mice. J Am Heart Assoc 3. doi: https://doi.org/10.1161/JAHA.114.000899
Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1:785–789. https://doi.org/10.1016/s0140-6736(63)91500-9
doi: 10.1016/s0140-6736(63)91500-9
pubmed: 13990765
Rattigan S, Appleby GJ, Clark MG (1991) Insulin-like action of catecholamines and Ca2+ to stimulate glucose transport and GLUT4 translocation in perfused rat heart. Biochim Biophys Acta 1094:217–223. https://doi.org/10.1016/0167-4889(91)90012-m
doi: 10.1016/0167-4889(91)90012-m
pubmed: 1909899
Renguet E, Bultot L, Beauloye C, Horman S, Bertrand L (2018) The regulation of insulin-stimulated cardiac glucose transport via protein acetylation. Front Cardiovasc Med 5:70. https://doi.org/10.3389/fcvm.2018.00070
doi: 10.3389/fcvm.2018.00070
pubmed: 29946550
pmcid: 6005846
Renguet E, Ginion A, Gelinas R, Bultot L, Auquier J, Robillard Frayne I, Daneault C, Vanoverschelde JL, Des Rosiers C, Hue L, Horman S, Beauloye C, Bertrand L (2017) Metabolism and acetylation contribute to leucine-mediated inhibition of cardiac glucose uptake. Am J Physiol Heart Circ Physiol 313:H432–H445. https://doi.org/10.1152/ajpheart.00738.2016
doi: 10.1152/ajpheart.00738.2016
pubmed: 28646031
Ritchie RH, Abel ED (2020) Basic mechanisms of diabetic heart disease. Circ Res 126:1501–1525. https://doi.org/10.1161/CIRCRESAHA.120.315913
doi: 10.1161/CIRCRESAHA.120.315913
pubmed: 32437308
Ritterhoff J, Tian R (2017) Metabolism in cardiomyopathy: every substrate matters. Cardiovasc Res 113:411–421. https://doi.org/10.1093/cvr/cvx017
doi: 10.1093/cvr/cvx017
pubmed: 28395011
pmcid: 5852620
Ritterhoff J, Young S, Villet O, Shao D, Neto FC, Bettcher LF, Hsu YA, Kolwicz SC Jr, Raftery D, Tian R (2020) Metabolic remodeling promotes cardiac hypertrophy by directing glucose to aspartate biosynthesis. Circ Res 126:182–196. https://doi.org/10.1161/CIRCRESAHA.119.315483
doi: 10.1161/CIRCRESAHA.119.315483
pubmed: 31709908
Roden M (2004) How free fatty acids inhibit glucose utilization in human skeletal muscle. News Physiol Sci 19:92–96. https://doi.org/10.1152/nips.01459.2003
doi: 10.1152/nips.01459.2003
pubmed: 15143200
Rosenblatt-Velin N, Montessuit C, Papageorgiou I, Terrand J, Lerch R (2001) Postinfarction heart failure in rats is associated with upregulation of GLUT-1 and downregulation of genes of fatty acid metabolism. Cardiovasc Res 52:407–416. https://doi.org/10.1016/s0008-6363(01)00393-5
doi: 10.1016/s0008-6363(01)00393-5
pubmed: 11738057
Russell RR 3rd, Bergeron R, Shulman GI, Young LH (1999) Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. Am J Phys 277:H643–H649. https://doi.org/10.1152/ajpheart.1999.277.2.H643
doi: 10.1152/ajpheart.1999.277.2.H643
Russell RR 3rd, Li J, Coven DL, Pypaert M, Zechner C, Palmeri M, Giordano FJ, Mu J, Birnbaum MJ, Young LH (2004) AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest 114:495–503. https://doi.org/10.1172/JCI19297
doi: 10.1172/JCI19297
pubmed: 15314686
pmcid: 503766
Russo I, Frangogiannis NG (2016) Diabetes-associated cardiac fibrosis: cellular effectors, molecular mechanisms and therapeutic opportunities. J Mol Cell Cardiol 90:84–93. https://doi.org/10.1016/j.yjmcc.2015.12.011
doi: 10.1016/j.yjmcc.2015.12.011
pubmed: 26705059
Salt IP, Hardie DG (2017) AMP-activated protein kinase: an ubiquitous signaling pathway with key roles in the cardiovascular system. Circ Res 120:1825–1841. https://doi.org/10.1161/CIRCRESAHA.117.309633
doi: 10.1161/CIRCRESAHA.117.309633
pubmed: 28546359
pmcid: 5447810
Sawa Y, Saito M, Ishida N, Ibi M, Matsushita N, Morino Y, Taira E, Hirose M (2020) Pretreatment with KGA-2727, a selective SGLT1 inhibitor, is protective against myocardial infarction-induced ventricular remodeling and heart failure in mice. J Pharmacol Sci 142:16–25. https://doi.org/10.1016/j.jphs.2019.11.001
doi: 10.1016/j.jphs.2019.11.001
pubmed: 31776072
Schwenk RW, Dirkx E, Coumans WA, Bonen A, Klip A, Glatz JF, Luiken JJ (2010) Requirement for distinct vesicle-associated membrane proteins in insulin- and AMP-activated protein kinase (AMPK)-induced translocation of GLUT4 and CD36 in cultured cardiomyocytes. Diabetologia 53:2209–2219. https://doi.org/10.1007/s00125-010-1832-7
doi: 10.1007/s00125-010-1832-7
pubmed: 20582536
pmcid: 2931635
Segalen C, Longnus SL, Baetz D, Counillon L, Van Obberghen E (2008) 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside reduces glucose uptake via the inhibition of Na+/H+ exchanger 1 in isolated rat ventricular cardiomyocytes. Endocrinology 149:1490–1498. https://doi.org/10.1210/en.2007-1326
doi: 10.1210/en.2007-1326
pubmed: 18187546
Sen S, Kundu BK, Wu HC, Hashmi SS, Guthrie P, Locke LW, Roy RJ, Matherne GP, Berr SS, Terwelp M, Scott B, Carranza S, Frazier OH, Glover DK, Dillmann WH, Gambello MJ, Entman ML, Taegtmeyer H (2013) Glucose regulation of load-induced mTOR signaling and ER stress in mammalian heart. J Am Heart Assoc 2:e004796. https://doi.org/10.1161/JAHA.113.004796
doi: 10.1161/JAHA.113.004796
pubmed: 23686371
pmcid: 3698799
Shao D, Tian R (2015) Glucose transporters in cardiac metabolism and hypertrophy. Compr Physiol 6:331–351. https://doi.org/10.1002/cphy.c150016
doi: 10.1002/cphy.c150016
pubmed: 26756635
pmcid: 4760112
Shuralyova I, Tajmir P, Bilan PJ, Sweeney G, Coe IR (2004) Inhibition of glucose uptake in murine cardiomyocyte cell line HL-1 by cardioprotective drugs dilazep and dipyridamole. Am J Physiol Heart Circ Physiol 286:H627–H632. https://doi.org/10.1152/ajpheart.00639.2003
doi: 10.1152/ajpheart.00639.2003
pubmed: 14551048
Singh VP, Baker KM, Kumar R (2008) Activation of the intracellular renin-angiotensin system in cardiac fibroblasts by high glucose: role in extracellular matrix production. Am J Physiol Heart Circ Physiol 294:H1675–H1684. https://doi.org/10.1152/ajpheart.91493.2007
doi: 10.1152/ajpheart.91493.2007
pubmed: 18296558
Steinberg GR, Carling D (2019) AMP-activated protein kinase: the current landscape for drug development. Nat Rev Drug Discov 18:527–551. https://doi.org/10.1038/s41573-019-0019-2
doi: 10.1038/s41573-019-0019-2
pubmed: 30867601
Sulaiman M, Matta MJ, Sunderesan NR, Gupta MP, Periasamy M, Gupta M (2010) Resveratrol, an activator of SIRT1, upregulates sarcoplasmic calcium ATPase and improves cardiac function in diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 298:H833–H843. https://doi.org/10.1152/ajpheart.00418.2009
doi: 10.1152/ajpheart.00418.2009
pubmed: 20008278
Sylow L, Jensen TE, Kleinert M, Hojlund K, Kiens B, Wojtaszewski J, Prats C, Schjerling P, Richter EA (2013) Rac1 signaling is required for insulin-stimulated glucose uptake and is dysregulated in insulin-resistant murine and human skeletal muscle. Diabetes 62:1865–1875. https://doi.org/10.2337/db12-1148
doi: 10.2337/db12-1148
pubmed: 23423567
pmcid: 3661612
Sylow L, Kleinert M, Pehmoller C, Prats C, Chiu TT, Klip A, Richter EA, Jensen TE (2014) Akt and Rac1 signaling are jointly required for insulin-stimulated glucose uptake in skeletal muscle and downregulated in insulin resistance. Cell Signal 26:323–331. https://doi.org/10.1016/j.cellsig.2013.11.007
doi: 10.1016/j.cellsig.2013.11.007
pubmed: 24216610
Szablewski L (2017) Glucose transporters in healthy heart and in cardiac disease. Int J Cardiol 230:70–75. https://doi.org/10.1016/j.ijcard.2016.12.083
doi: 10.1016/j.ijcard.2016.12.083
pubmed: 28034463
Taegtmeyer H, Beauloye C, Harmancey R, Hue L (2013) Insulin resistance protects the heart from fuel overload in dysregulated metabolic states. Am J Physiol Heart Circ Physiol 305:H1693–H1697. https://doi.org/10.1152/ajpheart.00854.2012
doi: 10.1152/ajpheart.00854.2012
pubmed: 24097426
pmcid: 3882545
Taegtmeyer H, Beauloye C, Harmancey R, Hue L (2015) Comment on Nolan et al. insulin resistance as a physiological defense against metabolic stress: implications for the management of subsets of type 2 diabetes. Diabetes 2015;64:673-686. Diabetes 64:e37. doi: https://doi.org/10.2337/db15-0655
Tallquist MD, Molkentin JD (2017) Redefining the identity of cardiac fibroblasts. Nat Rev Cardiol 14:484–491. https://doi.org/10.1038/nrcardio.2017.57
doi: 10.1038/nrcardio.2017.57
pubmed: 28436487
pmcid: 6329009
Taubert D, Rosenkranz A, Berkels R, Roesen R, Schomig E (2004) Acute effects of glucose and insulin on vascular endothelium. Diabetologia 47:2059–2071. https://doi.org/10.1007/s00125-004-1586-1
doi: 10.1007/s00125-004-1586-1
pubmed: 15662548
Tian R, Abel ED (2001) Responses of GLUT4-deficient hearts to ischemia underscore the importance of glycolysis. Circulation 103:2961–2966. https://doi.org/10.1161/01.cir.103.24.2961
doi: 10.1161/01.cir.103.24.2961
pubmed: 11413087
Tian R, Musi N, D’Agostino J, Hirshman MF, Goodyear LJ (2001) Increased adenosine monophosphate-activated protein kinase activity in rat hearts with pressure-overload hypertrophy. Circulation 104:1664–1669. https://doi.org/10.1161/hc4001.097183
doi: 10.1161/hc4001.097183
pubmed: 11581146
Timmermans AD, Balteau M, Gelinas R, Renguet E, Ginion A, de Meester C, Sakamoto K, Balligand JL, Bontemps F, Vanoverschelde JL, Horman S, Beauloye C, Bertrand L (2014) A-769662 potentiates the effect of other AMP-activated protein kinase activators on cardiac glucose uptake. Am J Physiol Heart Circ Physiol 306:H1619–H1630. https://doi.org/10.1152/ajpheart.00965.2013
doi: 10.1152/ajpheart.00965.2013
pubmed: 24748590
Totary-Jain H, Naveh-Many T, Riahi Y, Kaiser N, Eckel J, Sasson S (2005) Calreticulin destabilizes glucose transporter-1 mRNA in vascular endothelial and smooth muscle cells under high-glucose conditions. Circ Res 97:1001–1008. https://doi.org/10.1161/01.RES.0000189260.46084.e5
doi: 10.1161/01.RES.0000189260.46084.e5
pubmed: 16210549
Tran DH, May HI, Li Q, Luo X, Huang J, Zhang G, Niewold E, Wang X, Gillette TG, Deng Y, Wang ZV (2020) Chronic activation of hexosamine biosynthesis in the heart triggers pathological cardiac remodeling. Nat Commun 11:1771. https://doi.org/10.1038/s41467-020-15640-y
doi: 10.1038/s41467-020-15640-y
pubmed: 32286306
pmcid: 7156663
Treebak JT, Glund S, Deshmukh A, Klein DK, Long YC, Jensen TE, Jorgensen SB, Viollet B, Andersson L, Neumann D, Wallimann T, Richter EA, Chibalin AV, Zierath JR, Wojtaszewski JF (2006) AMPK-mediated AS160 phosphorylation in skeletal muscle is dependent on AMPK catalytic and regulatory subunits. Diabetes 55:2051–2058. https://doi.org/10.2337/db06-0175
doi: 10.2337/db06-0175
pubmed: 16804075
Ueda S, Kitazawa S, Ishida K, Nishikawa Y, Matsui M, Matsumoto H, Aoki T, Nozaki S, Takeda T, Tamori Y, Aiba A, Kahn CR, Kataoka T, Satoh T (2010) Crucial role of the small GTPase Rac1 in insulin-stimulated translocation of glucose transporter 4 to the mouse skeletal muscle sarcolemma. FASEB J 24:2254–2261. https://doi.org/10.1096/fj.09-137380
doi: 10.1096/fj.09-137380
pubmed: 20203090
pmcid: 4183928
Uthman L, Baartscheer A, Bleijlevens B, Schumacher CA, Fiolet JWT, Koeman A, Jancev M, Hollmann MW, Weber NC, Coronel R, Zuurbier CJ (2018) Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na(+)/H(+) exchanger, lowering of cytosolic Na(+) and vasodilation. Diabetologia 61:722–726. https://doi.org/10.1007/s00125-017-4509-7
doi: 10.1007/s00125-017-4509-7
pubmed: 29197997
Van Steenbergen A, Balteau M, Ginion A, Ferte L, Battault S, Ravenstein CM, Balligand JL, Daskalopoulos EP, Gilon P, Despa F, Despa S, Vanoverschelde JL, Horman S, Koepsell H, Berry G, Hue L, Bertrand L, Beauloye C (2017) Sodium-myoinositol cotransporter-1, SMIT1, mediates the production of reactive oxygen species induced by hyperglycemia in the heart. Sci Rep 7:41166. https://doi.org/10.1038/srep41166
doi: 10.1038/srep41166
pubmed: 28128227
pmcid: 5269587
Vichaiwong K, Purohit S, An D, Toyoda T, Jessen N, Hirshman MF, Goodyear LJ (2010) Contraction regulates site-specific phosphorylation of TBC1D1 in skeletal muscle. Biochem J 431:311–320. https://doi.org/10.1042/BJ20101100
doi: 10.1042/BJ20101100
pubmed: 20701589
pmcid: 2947193
Vrhovac I, Balen Eror D, Klessen D, Burger C, Breljak D, Kraus O, Radovic N, Jadrijevic S, Aleksic I, Walles T, Sauvant C, Sabolic I, Koepsell H (2015) Localizations of Na(+)-D-glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Pflugers Arch 467:1881–1898. https://doi.org/10.1007/s00424-014-1619-7
doi: 10.1007/s00424-014-1619-7
pubmed: 25304002
Wang C, Hu SM (1991) Developmental regulation in the expression of rat heart glucose transporters. Biochem Biophys Res Commun 177:1095–1100. https://doi.org/10.1016/0006-291x(91)90651-m
doi: 10.1016/0006-291x(91)90651-m
pubmed: 1711843
Wang HY, Ducommun S, Quan C, Xie B, Li M, Wasserman DH, Sakamoto K, Mackintosh C, Chen S (2013) AS160 deficiency causes whole-body insulin resistance via composite effects in multiple tissues. Biochem J 449:479–489. https://doi.org/10.1042/BJ20120702
doi: 10.1042/BJ20120702
pubmed: 23078342
Weeks KL, Gao X, Du XJ, Boey EJ, Matsumoto A, Bernardo BC, Kiriazis H, Cemerlang N, Tan JW, Tham YK, Franke TF, Qian H, Bogoyevitch MA, Woodcock EA, Febbraio MA, Gregorevic P, McMullen JR (2012) Phosphoinositide 3-kinase p110alpha is a master regulator of exercise-induced cardioprotection and PI3K gene therapy rescues cardiac dysfunction. Circ Heart Fail 5:523–534. https://doi.org/10.1161/CIRCHEARTFAILURE.112.966622
doi: 10.1161/CIRCHEARTFAILURE.112.966622
pubmed: 22705768
Wende AR, Schell JC, Ha CM, Pepin ME, Khalimonchuk O, Schwertz H, Pereira RO, Brahma MK, Tuinei J, Contreras-Ferrat A, Wang L, Andrizzi CA, Olsen CD, Bradley WE, Dell’Italia LJ, Dillmann WH, Litwin SE, Abel ED (2020) Maintaining myocardial glucose utilization in diabetic cardiomyopathy accelerates mitochondrial dysfunction. Diabetes. https://doi.org/10.2337/db19-1057
Wheeler TJ, Fell RD, Hauck MA (1994) Translocation of two glucose transporters in heart: effects of rotenone, uncouplers, workload, palmitate, insulin and anoxia. Biochim Biophys Acta 1196:191–200. https://doi.org/10.1016/0005-2736(94)00211-8
doi: 10.1016/0005-2736(94)00211-8
pubmed: 7841183
Willaert A, Khatri S, Callewaert BL, Coucke PJ, Crosby SD, Lee JG, Davis EC, Shiva S, Tsang M, De Paepe A, Urban Z (2012) GLUT10 is required for the development of the cardiovascular system and the notochord and connects mitochondrial function to TGFbeta signaling. Hum Mol Genet 21:1248–1259. https://doi.org/10.1093/hmg/ddr555
doi: 10.1093/hmg/ddr555
pubmed: 22116938
Wilson C, Contreras-Ferrat A, Venegas N, Osorio-Fuentealba C, Pavez M, Montoya K, Duran J, Maass R, Lavandero S, Estrada M (2013) Testosterone increases GLUT4-dependent glucose uptake in cardiomyocytes. J Cell Physiol 228:2399–2407. https://doi.org/10.1002/jcp.24413
doi: 10.1002/jcp.24413
pubmed: 23757167
Wright EM, Loo DD, Hirayama BA (2011) Biology of human sodium glucose transporters. Physiol Rev 91:733–794. https://doi.org/10.1152/physrev.00055.2009
doi: 10.1152/physrev.00055.2009
pubmed: 21527736
Xie Z, Lau K, Eby B, Lozano P, He C, Pennington B, Li H, Rathi S, Dong Y, Tian R, Kem D, Zou MH (2011) Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes 60:1770–1778. https://doi.org/10.2337/db10-0351
doi: 10.2337/db10-0351
pubmed: 21562078
pmcid: 3114402
Xing Y, Musi N, Fujii N, Zou L, Luptak I, Hirshman MF, Goodyear LJ, Tian R (2003) Glucose metabolism and energy homeostasis in mouse hearts overexpressing dominant negative alpha2 subunit of AMP-activated protein kinase. J Biol Chem 278:28372–28377. https://doi.org/10.1074/jbc.M303521200
doi: 10.1074/jbc.M303521200
pubmed: 12766162
Yan J, Young ME, Cui L, Lopaschuk GD, Liao R, Tian R (2009) Increased glucose uptake and oxidation in mouse hearts prevent high fatty acid oxidation but cause cardiac dysfunction in diet-induced obesity. Circulation 119:2818–2828. https://doi.org/10.1161/CIRCULATIONAHA.108.832915
doi: 10.1161/CIRCULATIONAHA.108.832915
pubmed: 19451348
pmcid: 2765220
Yang J, Holman GD (2005) Insulin and contraction stimulate exocytosis, but increased AMP-activated protein kinase activity resulting from oxidative metabolism stress slows endocytosis of GLUT4 in cardiomyocytes. J Biol Chem 280:4070–4078. https://doi.org/10.1074/jbc.M410213200
doi: 10.1074/jbc.M410213200
pubmed: 15557332
Yazdani S, Jaldin-Fincati JR, Pereira RVS, Klip A (2019) Endothelial cell barriers: transport of molecules between blood and tissues. Traffic 20:390–403. https://doi.org/10.1111/tra.12645
doi: 10.1111/tra.12645
pubmed: 30950163
Young LH, Renfu Y, Russell R, Hu X, Caplan M, Ren J, Shulman GI, Sinusas AJ (1997) Low-flow ischemia leads to translocation of canine heart GLUT-4 and GLUT-1 glucose transporters to the sarcolemma in vivo. Circulation 95:415–422. https://doi.org/10.1161/01.cir.95.2.415
doi: 10.1161/01.cir.95.2.415
pubmed: 9008459
Yu W, Gao B, Li N, Wang J, Qiu C, Zhang G, Liu M, Zhang R, Li C, Ji G, Zhang Y (2017) Sirt3 deficiency exacerbates diabetic cardiac dysfunction: role of Foxo3A-Parkin-mediated mitophagy. Biochim Biophys Acta Mol basis Dis 1863:1973–1983. https://doi.org/10.1016/j.bbadis.2016.10.021
doi: 10.1016/j.bbadis.2016.10.021
pubmed: 27794418
Zaha V, Nitschke R, Gobel H, Fischer-Rasokat U, Zechner C, Doenst T (2005) Discrepancy between GLUT4 translocation and glucose uptake after ischemia. Mol Cell Biochem 278:129–137. https://doi.org/10.1007/s11010-005-7154-2
doi: 10.1007/s11010-005-7154-2
pubmed: 16180098
Zarrinpashneh E, Carjaval K, Beauloye C, Ginion A, Mateo P, Pouleur AC, Horman S, Vaulont S, Hoerter J, Viollet B, Hue L, Vanoverschelde JL, Bertrand L (2006) Role of the alpha2-isoform of AMP-activated protein kinase in the metabolic response of the heart to no-flow ischemia. Am J Physiol Heart Circ Physiol 291:H2875–H2883. https://doi.org/10.1152/ajpheart.01032.2005
doi: 10.1152/ajpheart.01032.2005
pubmed: 16877552
Zelniker TA, Braunwald E (2020) Mechanisms of cardiorenal effects of sodium-glucose cotransporter 2 inhibitors: JACC State-of-the-Art Review. J Am Coll Cardiol 75:422–434. https://doi.org/10.1016/j.jacc.2019.11.031
doi: 10.1016/j.jacc.2019.11.031
pubmed: 32000955
Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Furtado RHM, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Sabatine MS (2019) SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 393:31–39. https://doi.org/10.1016/S0140-6736(18)32590-X
doi: 10.1016/S0140-6736(18)32590-X
pubmed: 30424892
Zhabyeyev P, Gandhi M, Mori J, Basu R, Kassiri Z, Clanachan A, Lopaschuk GD, Oudit GY (2013) Pressure-overload-induced heart failure induces a selective reduction in glucose oxidation at physiological afterload. Cardiovasc Res 97:676–685. https://doi.org/10.1093/cvr/cvs424
doi: 10.1093/cvr/cvs424
pubmed: 23257023
Zhang L, Jaswal JS, Ussher JR, Sankaralingam S, Wagg C, Zaugg M, Lopaschuk GD (2013) Cardiac insulin-resistance and decreased mitochondrial energy production precede the development of systolic heart failure after pressure-overload hypertrophy. Circ Heart Fail 6:1039–1048. https://doi.org/10.1161/CIRCHEARTFAILURE.112.000228
doi: 10.1161/CIRCHEARTFAILURE.112.000228
pubmed: 23861485
Zhang Y, Wang JH, Zhang YY, Wang YZ, Wang J, Zhao Y, Jin XX, Xue GL, Li PH, Sun YL, Huang QH, Song XT, Zhang ZR, Gao X, Yang BF, Du ZM, Pan ZW (2016) Deletion of interleukin-6 alleviated interstitial fibrosis in streptozotocin-induced diabetic cardiomyopathy of mice through affecting TGFbeta1 and miR-29 pathways. Sci Rep 6:23010. https://doi.org/10.1038/srep23010
doi: 10.1038/srep23010
pubmed: 26972749
pmcid: 4789642
Zhou L, Huang H, Yuan CL, Keung W, Lopaschuk GD, Stanley WC (2008) Metabolic response to an acute jump in cardiac workload: effects on malonyl-CoA, mechanical efficiency, and fatty acid oxidation. Am J Physiol Heart Circ Physiol 294:H954–H960. https://doi.org/10.1152/ajpheart.00557.2007
doi: 10.1152/ajpheart.00557.2007
pubmed: 18083904
Ziegler GC, Almos P, McNeill RV, Jansch C, Lesch KP (2020) Cellular effects and clinical implications of SLC2A3 copy number variation. J Cell Physiol. https://doi.org/10.1002/jcp.29753
Zuurbier CJ, Bertrand L, Beauloye CR, Andreadou I, Ruiz-Meana M, Jespersen NR, Kula-Alwar D, Prag HA, Eric Botker H, Dambrova M, Montessuit C, Kaambre T, Liepinsh E, Brookes PS, Krieg T (2020) Cardiac metabolism as a driver and therapeutic target of myocardial infarction. J Cell Mol Med 24:5937–5954. https://doi.org/10.1111/jcmm.15180
doi: 10.1111/jcmm.15180
pubmed: 32384583
pmcid: 7294140