Age-induced accumulation of methylmalonic acid promotes tumour progression.
Adult
Aged
Aging
/ blood
Animals
Cell Line, Tumor
Disease Progression
Female
Gene Expression Regulation, Neoplastic
Humans
Male
Methylmalonic Acid
/ blood
Mice
Middle Aged
Neoplasm Invasiveness
/ genetics
Neoplasm Metastasis
/ genetics
Neoplasms
/ blood
SOXC Transcription Factors
/ metabolism
Signal Transduction
Transcriptome
/ genetics
Transforming Growth Factor beta
/ metabolism
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
09 2020
09 2020
Historique:
received:
07
05
2019
accepted:
10
07
2020
pubmed:
21
8
2020
medline:
22
9
2020
entrez:
21
8
2020
Statut:
ppublish
Résumé
The risk of cancer and associated mortality increases substantially in humans from the age of 65 years onwards
Identifiants
pubmed: 32814897
doi: 10.1038/s41586-020-2630-0
pii: 10.1038/s41586-020-2630-0
pmc: PMC7785256
mid: NIHMS1611221
doi:
Substances chimiques
SOX4 protein, human
0
SOXC Transcription Factors
0
Transforming Growth Factor beta
0
Methylmalonic Acid
8LL8S712J7
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
283-287Subventions
Organisme : NCI NIH HHS
ID : R01 CA046595
Pays : United States
Organisme : European Research Council
Pays : International
Organisme : NCI NIH HHS
ID : K99 CA218686
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM008539
Pays : United States
Organisme : NCI NIH HHS
ID : F31 CA220750
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM007739
Pays : United States
Commentaires et corrections
Type : CommentIn
Type : CommentIn
Références
Wu, L. E., Gomes, A. P. & Sinclair, D. A. Geroncogenesis: metabolic changes during aging as a driver of tumorigenesis. Cancer Cell 25, 12–19 (2014).
pubmed: 24434207
pmcid: 3970212
Thigpen, T. et al. Age as a prognostic factor in ovarian carcinoma. The Gynecologic Oncology Group experience. Cancer 71 (Suppl), 606–614 (1993).
pubmed: 8420683
Deng, F. et al. Age is associated with prognosis in serous ovarian carcinoma. J. Ovarian Res. 10, 36 (2017).
pubmed: 28606125
pmcid: 5469143
Gloeckler Ries, L. A., Reichman, M. E., Lewis, D. R., Hankey, B. F. & Edwards, B. K. Cancer survival and incidence from the Surveillance, Epidemiology, and End Results (SEER) program. Oncologist 8, 541–552 (2003).
pubmed: 14657533
White, M. C. et al. Age and cancer risk: a potentially modifiable relationship. Am. J. Prev. Med. 46 (Suppl 1), S7–S15 (2014).
pubmed: 24512933
pmcid: 4544764
Balducci, L. & Ershler, W. B. Cancer and ageing: a nexus at several levels. Nat. Rev. Cancer 5, 655–662 (2005).
pubmed: 16056261
Serrano, M. & Blasco, M. A. Cancer and ageing: convergent and divergent mechanisms. Nat. Rev. Mol. Cell Biol. 8, 715–722 (2007).
pubmed: 17717516
Migkou, M. et al. Short progression-free survival predicts for poor overall survival in older patients with multiple myeloma treated upfront with novel agent-based therapy. Eur. J. Haematol. 87, 323–329 (2011).
pubmed: 21631590
Kasznicki, J., Sliwinska, A. & Drzewoski, J. Metformin in cancer prevention and therapy. Ann. Transl. Med. 2, 57 (2014).
pubmed: 25333032
pmcid: 4200668
Li, J., Kim, S. G. & Blenis, J. Rapamycin: one drug, many effects. Cell Metab. 19, 373–379 (2014).
pubmed: 24508508
pmcid: 3972801
De Lorenzo, M. S. et al. Caloric restriction reduces growth of mammary tumors and metastases. Carcinogenesis 32, 1381–1387 (2011).
pubmed: 21665891
pmcid: 3165123
Ligibel, J. Lifestyle factors in cancer survivorship. J. Clin. Oncol. 30, 3697–3704 (2012).
pubmed: 23008316
Ye, X. & Weinberg, R. A. Epithelial–mesenchymal plasticity: a central regulator of cancer progression. Trends Cell Biol. 25, 675–686 (2015).
pubmed: 26437589
pmcid: 4628843
Wu, Y. & Zhou, B. P. Inflammation: a driving force speeds cancer metastasis. Cell Cycle 8, 3267–3273 (2009).
pubmed: 19770594
pmcid: 3702728
Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522 (2018).
pubmed: 30065258
pmcid: 6146930
Zhu, Y., Carvey, P. M. & Ling, Z. Age-related changes in glutathione and glutathione-related enzymes in rat brain. Brain Res. 1090, 35–44 (2006).
pubmed: 16647047
pmcid: 1868496
Tong, J. et al. Do glutathione levels decline in aging human brain? Free Radic. Biol. Med. 93, 110–117 (2016).
pubmed: 26845616
Madeo, F., Carmona-Gutierrez, D., Kepp, O. & Kroemer, G. Spermidine delays aging in humans. Aging (Albany NY) 10, 2209–2211 (2018).
Meynial-Denis, D. Glutamine metabolism in advanced age. Nutr. Rev. 74, 225–236 (2016).
pubmed: 26936258
pmcid: 4892310
Chandler, R. J. & Venditti, C. P. Genetic and genomic systems to study methylmalonic acidemia. Mol. Genet. Metab. 86, 34–43 (2005).
pubmed: 16182581
pmcid: 2657357
Riekeberg, E. & Powers, R. New frontiers in metabolomics: from measurement to insight. F1000 Res. 6, 1148 (2017).
Baik, H. W. & Russell, R. M. Vitamin B12 deficiency in the elderly. Annu. Rev. Nutr. 19, 357–377 (1999).
pubmed: 10448529
Zhang, J. et al. SOX4 induces epithelial-mesenchymal transition and contributes to breast cancer progression. Cancer Res. 72, 4597–4608 (2012).
pubmed: 22787120
Wang, L. et al. SOX4 is associated with poor prognosis in prostate cancer and promotes epithelial-mesenchymal transition in vitro. Prostate Cancer Prostatic Dis. 16, 301–307 (2013).
pubmed: 23917306
Yang, M. et al. Estrogen induces androgen-repressed SOX4 expression to promote progression of prostate cancer cells. Prostate 75, 1363–1375 (2015).
pubmed: 26015225
Liao, Y. L. et al. Identification of SOX4 target genes using phylogenetic footprinting-based prediction from expression microarrays suggests that overexpression of SOX4 potentiates metastasis in hepatocellular carcinoma. Oncogene 27, 5578–5589 (2008).
pubmed: 18504433
Lourenço, A. R. & Coffer, P. J. SOX4: joining the master regulators of epithelial-to-mesenchymal transition? Trends Cancer 3, 571–582 (2017).
pubmed: 28780934
Vervoort, S. J. et al. Global transcriptional analysis identifies a novel role for SOX4 in tumor-induced angiogenesis. eLife 7, e27706 (2018).
pubmed: 30507376
pmcid: 6277201
Wong, C. C., Qian, Y. & Yu, J. Interplay between epigenetics and metabolism in oncogenesis: mechanisms and therapeutic approaches. Oncogene 36, 3359–3374 (2017).
pubmed: 28092669
pmcid: 5485177
Vervoort, S. J., van Boxtel, R. & Coffer, P. J. The role of SRY-related HMG box transcription factor 4 (SOX4) in tumorigenesis and metastasis: friend or foe? Oncogene 32, 3397–3409 (2013).
pubmed: 23246969
Debnath, J., Muthuswamy, S. K. & Brugge, J. S. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30, 256–268 (2003).
pubmed: 12798140
Minn, A. J. et al. Genes that mediate breast cancer metastasis to lung. Nature 436, 518–524 (2005).
pubmed: 16049480
pmcid: 1283098
Yuan, M., Breitkopf, S. B., Yang, X. & Asara, J. M. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat. Protoc. 7, 872–881 (2012).
pubmed: 22498707
pmcid: 3685491
Rappsilber, J., Ishihama, Y. & Mann, M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal. Chem. 75, 663–670 (2003).
pubmed: 12585499
Erickson, B. K. et al. Active instrument engagement combined with a real-time database search for improved performance of sample multiplexing workflows. J. Proteome Res. 18, 1299–1306 (2019).
pubmed: 30658528
pmcid: 7081948
Eng, J. K., McCormack, A. L. & Yates, J. R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).
pubmed: 24226387
Elias, J. E. & Gygi, S. P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4, 207–214 (2007).
pubmed: 17327847
Huttlin, E. L. et al. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174–1189 (2010).
pubmed: 21183079
pmcid: 3035969
Shin, S., Dimitri, C. A., Yoon, S. O., Dowdle, W. & Blenis, J. ERK2 but not ERK1 induces epithelial-to-mesenchymal transformation via DEF motif-dependent signaling events. Mol. Cell 38, 114–127 (2010).
pubmed: 20385094
pmcid: 2854677
Blighe, K. EnhancedVolcano: publication-ready volcano plots with enhanced colouring and labeling. R Package Version 1.0.1 (2019).
Reich, M. et al. GenePattern 2.0. Nat. Genet. 38, 500–501 (2006).
pubmed: 16642009
Dennis, G., Jr et al. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol. 4, 3 (2003).
Shen, L. & Sinai, M. GeneOverlap: Test and visualize gene overlaps. R Package Version 1.18.0 (2018).
Oskarsson, T. et al. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat. Med. 17, 867–874 (2011).
pubmed: 21706029
pmcid: 4020577
Goyenechea, E. et al. Expression of proinflammatory factors in renal cortex induced by methylmalonic acid. Ren. Fail. 34, 885–891 (2012).
pubmed: 22583396
van Gorsel, M., Elia, I. & Fendt, S.-M. in Metabolic Signaling: Methods and Protocols Methods in Molecular Biology (eds Lundt, Sophia & Fendt, S.-M.) chapter 4 (Humana, 2018).
Elia, I. et al. Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat. Commun. 8, 15267 (2017).
pubmed: 28492237
pmcid: 5437289
Lorendeau, D. et al. Dual loss of succinate dehydrogenase (SDH) and complex I activity is necessary to recapitulate the metabolic phenotype of SDH mutant tumors. Metab. Eng. 43 (Pt. B), 187–197 (2017).
pubmed: 27847310
Fernandez, C. A., Des Rosiers, C., Previs, S. F., David, F. & Brunengraber, H. Correction of 13C mass isotopomer distributions for natural stable isotope abundance. J. Mass Spectrom. 31, 255–262 (1996).
pubmed: 8799277