Age-induced accumulation of methylmalonic acid promotes tumour progression.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
09 2020
Historique:
received: 07 05 2019
accepted: 10 07 2020
pubmed: 21 8 2020
medline: 22 9 2020
entrez: 21 8 2020
Statut: ppublish

Résumé

The risk of cancer and associated mortality increases substantially in humans from the age of 65 years onwards

Identifiants

pubmed: 32814897
doi: 10.1038/s41586-020-2630-0
pii: 10.1038/s41586-020-2630-0
pmc: PMC7785256
mid: NIHMS1611221
doi:

Substances chimiques

SOX4 protein, human 0
SOXC Transcription Factors 0
Transforming Growth Factor beta 0
Methylmalonic Acid 8LL8S712J7

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

283-287

Subventions

Organisme : NCI NIH HHS
ID : R01 CA046595
Pays : United States
Organisme : European Research Council
Pays : International
Organisme : NCI NIH HHS
ID : K99 CA218686
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM008539
Pays : United States
Organisme : NCI NIH HHS
ID : F31 CA220750
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM007739
Pays : United States

Commentaires et corrections

Type : CommentIn
Type : CommentIn

Références

Wu, L. E., Gomes, A. P. & Sinclair, D. A. Geroncogenesis: metabolic changes during aging as a driver of tumorigenesis. Cancer Cell 25, 12–19 (2014).
pubmed: 24434207 pmcid: 3970212
Thigpen, T. et al. Age as a prognostic factor in ovarian carcinoma. The Gynecologic Oncology Group experience. Cancer 71 (Suppl), 606–614 (1993).
pubmed: 8420683
Deng, F. et al. Age is associated with prognosis in serous ovarian carcinoma. J. Ovarian Res. 10, 36 (2017).
pubmed: 28606125 pmcid: 5469143
Gloeckler Ries, L. A., Reichman, M. E., Lewis, D. R., Hankey, B. F. & Edwards, B. K. Cancer survival and incidence from the Surveillance, Epidemiology, and End Results (SEER) program. Oncologist 8, 541–552 (2003).
pubmed: 14657533
White, M. C. et al. Age and cancer risk: a potentially modifiable relationship. Am. J. Prev. Med. 46 (Suppl 1), S7–S15 (2014).
pubmed: 24512933 pmcid: 4544764
Balducci, L. & Ershler, W. B. Cancer and ageing: a nexus at several levels. Nat. Rev. Cancer 5, 655–662 (2005).
pubmed: 16056261
Serrano, M. & Blasco, M. A. Cancer and ageing: convergent and divergent mechanisms. Nat. Rev. Mol. Cell Biol. 8, 715–722 (2007).
pubmed: 17717516
Migkou, M. et al. Short progression-free survival predicts for poor overall survival in older patients with multiple myeloma treated upfront with novel agent-based therapy. Eur. J. Haematol. 87, 323–329 (2011).
pubmed: 21631590
Kasznicki, J., Sliwinska, A. & Drzewoski, J. Metformin in cancer prevention and therapy. Ann. Transl. Med. 2, 57 (2014).
pubmed: 25333032 pmcid: 4200668
Li, J., Kim, S. G. & Blenis, J. Rapamycin: one drug, many effects. Cell Metab. 19, 373–379 (2014).
pubmed: 24508508 pmcid: 3972801
De Lorenzo, M. S. et al. Caloric restriction reduces growth of mammary tumors and metastases. Carcinogenesis 32, 1381–1387 (2011).
pubmed: 21665891 pmcid: 3165123
Ligibel, J. Lifestyle factors in cancer survivorship. J. Clin. Oncol. 30, 3697–3704 (2012).
pubmed: 23008316
Ye, X. & Weinberg, R. A. Epithelial–mesenchymal plasticity: a central regulator of cancer progression. Trends Cell Biol. 25, 675–686 (2015).
pubmed: 26437589 pmcid: 4628843
Wu, Y. & Zhou, B. P. Inflammation: a driving force speeds cancer metastasis. Cell Cycle 8, 3267–3273 (2009).
pubmed: 19770594 pmcid: 3702728
Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522 (2018).
pubmed: 30065258 pmcid: 6146930
Zhu, Y., Carvey, P. M. & Ling, Z. Age-related changes in glutathione and glutathione-related enzymes in rat brain. Brain Res. 1090, 35–44 (2006).
pubmed: 16647047 pmcid: 1868496
Tong, J. et al. Do glutathione levels decline in aging human brain? Free Radic. Biol. Med. 93, 110–117 (2016).
pubmed: 26845616
Madeo, F., Carmona-Gutierrez, D., Kepp, O. & Kroemer, G. Spermidine delays aging in humans. Aging (Albany NY) 10, 2209–2211 (2018).
Meynial-Denis, D. Glutamine metabolism in advanced age. Nutr. Rev. 74, 225–236 (2016).
pubmed: 26936258 pmcid: 4892310
Chandler, R. J. & Venditti, C. P. Genetic and genomic systems to study methylmalonic acidemia. Mol. Genet. Metab. 86, 34–43 (2005).
pubmed: 16182581 pmcid: 2657357
Riekeberg, E. & Powers, R. New frontiers in metabolomics: from measurement to insight. F1000 Res. 6, 1148 (2017).
Baik, H. W. & Russell, R. M. Vitamin B12 deficiency in the elderly. Annu. Rev. Nutr. 19, 357–377 (1999).
pubmed: 10448529
Zhang, J. et al. SOX4 induces epithelial-mesenchymal transition and contributes to breast cancer progression. Cancer Res. 72, 4597–4608 (2012).
pubmed: 22787120
Wang, L. et al. SOX4 is associated with poor prognosis in prostate cancer and promotes epithelial-mesenchymal transition in vitro. Prostate Cancer Prostatic Dis. 16, 301–307 (2013).
pubmed: 23917306
Yang, M. et al. Estrogen induces androgen-repressed SOX4 expression to promote progression of prostate cancer cells. Prostate 75, 1363–1375 (2015).
pubmed: 26015225
Liao, Y. L. et al. Identification of SOX4 target genes using phylogenetic footprinting-based prediction from expression microarrays suggests that overexpression of SOX4 potentiates metastasis in hepatocellular carcinoma. Oncogene 27, 5578–5589 (2008).
pubmed: 18504433
Lourenço, A. R. & Coffer, P. J. SOX4: joining the master regulators of epithelial-to-mesenchymal transition? Trends Cancer 3, 571–582 (2017).
pubmed: 28780934
Vervoort, S. J. et al. Global transcriptional analysis identifies a novel role for SOX4 in tumor-induced angiogenesis. eLife 7, e27706 (2018).
pubmed: 30507376 pmcid: 6277201
Wong, C. C., Qian, Y. & Yu, J. Interplay between epigenetics and metabolism in oncogenesis: mechanisms and therapeutic approaches. Oncogene 36, 3359–3374 (2017).
pubmed: 28092669 pmcid: 5485177
Vervoort, S. J., van Boxtel, R. & Coffer, P. J. The role of SRY-related HMG box transcription factor 4 (SOX4) in tumorigenesis and metastasis: friend or foe? Oncogene 32, 3397–3409 (2013).
pubmed: 23246969
Debnath, J., Muthuswamy, S. K. & Brugge, J. S. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30, 256–268 (2003).
pubmed: 12798140
Minn, A. J. et al. Genes that mediate breast cancer metastasis to lung. Nature 436, 518–524 (2005).
pubmed: 16049480 pmcid: 1283098
Yuan, M., Breitkopf, S. B., Yang, X. & Asara, J. M. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat. Protoc. 7, 872–881 (2012).
pubmed: 22498707 pmcid: 3685491
Rappsilber, J., Ishihama, Y. & Mann, M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal. Chem. 75, 663–670 (2003).
pubmed: 12585499
Erickson, B. K. et al. Active instrument engagement combined with a real-time database search for improved performance of sample multiplexing workflows. J. Proteome Res. 18, 1299–1306 (2019).
pubmed: 30658528 pmcid: 7081948
Eng, J. K., McCormack, A. L. & Yates, J. R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).
pubmed: 24226387
Elias, J. E. & Gygi, S. P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4, 207–214 (2007).
pubmed: 17327847
Huttlin, E. L. et al. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174–1189 (2010).
pubmed: 21183079 pmcid: 3035969
Shin, S., Dimitri, C. A., Yoon, S. O., Dowdle, W. & Blenis, J. ERK2 but not ERK1 induces epithelial-to-mesenchymal transformation via DEF motif-dependent signaling events. Mol. Cell 38, 114–127 (2010).
pubmed: 20385094 pmcid: 2854677
Blighe, K. EnhancedVolcano: publication-ready volcano plots with enhanced colouring and labeling. R Package Version 1.0.1 (2019).
Reich, M. et al. GenePattern 2.0. Nat. Genet. 38, 500–501 (2006).
pubmed: 16642009
Dennis, G., Jr et al. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol. 4, 3 (2003).
Shen, L. & Sinai, M. GeneOverlap: Test and visualize gene overlaps. R Package Version 1.18.0 (2018).
Oskarsson, T. et al. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat. Med. 17, 867–874 (2011).
pubmed: 21706029 pmcid: 4020577
Goyenechea, E. et al. Expression of proinflammatory factors in renal cortex induced by methylmalonic acid. Ren. Fail. 34, 885–891 (2012).
pubmed: 22583396
van Gorsel, M., Elia, I. & Fendt, S.-M. in Metabolic Signaling: Methods and Protocols Methods in Molecular Biology (eds Lundt, Sophia & Fendt, S.-M.) chapter 4 (Humana, 2018).
Elia, I. et al. Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat. Commun. 8, 15267 (2017).
pubmed: 28492237 pmcid: 5437289
Lorendeau, D. et al. Dual loss of succinate dehydrogenase (SDH) and complex I activity is necessary to recapitulate the metabolic phenotype of SDH mutant tumors. Metab. Eng. 43 (Pt. B), 187–197 (2017).
pubmed: 27847310
Fernandez, C. A., Des Rosiers, C., Previs, S. F., David, F. & Brunengraber, H. Correction of 13C mass isotopomer distributions for natural stable isotope abundance. J. Mass Spectrom. 31, 255–262 (1996).
pubmed: 8799277

Auteurs

Ana P Gomes (AP)

Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA. ana.gomes@moffitt.org.
Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA. ana.gomes@moffitt.org.
Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA. ana.gomes@moffitt.org.

Didem Ilter (D)

Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.

Vivien Low (V)

Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
The Biochemistry, Structural, Developmental, Cell and Molecular Biology Allied PhD Program, Weill Cornell Medicine, New York, NY, USA.

Jennifer E Endress (JE)

Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
The Biochemistry, Structural, Developmental, Cell and Molecular Biology Allied PhD Program, Weill Cornell Medicine, New York, NY, USA.

Juan Fernández-García (J)

Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium.
Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.

Adam Rosenzweig (A)

Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.

Tanya Schild (T)

Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
The Biochemistry, Structural, Developmental, Cell and Molecular Biology Allied PhD Program, Weill Cornell Medicine, New York, NY, USA.

Dorien Broekaert (D)

Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium.
Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.

Adnan Ahmed (A)

Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.

Melanie Planque (M)

Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium.
Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.

Ilaria Elia (I)

Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium.
Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.

Julie Han (J)

Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.

Charles Kinzig (C)

Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
Weill Cornell Medicine/Rockefeller University/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA.

Edouard Mullarky (E)

Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
Department of Medicine, Weill Cornell Medicine, New York, NY, USA.

Anders P Mutvei (AP)

Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.

John Asara (J)

Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.

Rafael de Cabo (R)

Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.

Lewis C Cantley (LC)

Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
Department of Medicine, Weill Cornell Medicine, New York, NY, USA.

Noah Dephoure (N)

Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.

Sarah-Maria Fendt (SM)

Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium.
Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.

John Blenis (J)

Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA. job2064@med.cornell.edu.
Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA. job2064@med.cornell.edu.
Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA. job2064@med.cornell.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH