Expanding the clinical and genetic spectrum of CAD deficiency: an epileptic encephalopathy treatable with uridine supplementation.
EIEE
anemia
developmental delay
early infantile epileptic encephalopathy-50
epilepsy
Journal
Genetics in medicine : official journal of the American College of Medical Genetics
ISSN: 1530-0366
Titre abrégé: Genet Med
Pays: United States
ID NLM: 9815831
Informations de publication
Date de publication:
10 2020
10 2020
Historique:
received:
01
04
2020
accepted:
28
07
2020
revised:
02
07
2020
pubmed:
21
8
2020
medline:
28
4
2021
entrez:
22
8
2020
Statut:
ppublish
Résumé
Biallelic CAD variants underlie CAD deficiency (or early infantile epileptic encephalopathy-50, [EIEE-50]), an error of pyrimidine de novo biosynthesis amenable to treatment via the uridine salvage pathway. We further define the genotype and phenotype with a focus on treatment. Retrospective case series of 20 patients. Our study confirms CAD deficiency as a progressive EIEE with recurrent status epilepticus, loss of skills, and dyserythropoietic anemia. We further refine the phenotype by reporting a movement disorder as a frequent feature, and add that milder courses with isolated developmental delay/intellectual disability can occur as well as onset with neonatal seizures. With no biomarker available, the diagnosis relies on genetic testing and functional validation in patient-derived fibroblasts. Underlying pathogenic variants are often rated as variants of unknown significance, which could lead to underrecognition of this treatable disorder. Supplementation with uridine, uridine monophosphate, or uridine triacetate in ten patients was safe and led to significant clinical improvement in most patients. We advise a trial with uridine (monophosphate) in all patients with developmental delay/intellectual disability, epilepsy, and anemia; all patients with status epilepticus; and all patients with neonatal seizures until (genetically) proven otherwise or proven unsuccessful after 6 months. CAD deficiency might represent a condition for genetic newborn screening.
Identifiants
pubmed: 32820246
doi: 10.1038/s41436-020-0933-z
pii: S1098-3600(21)00760-7
doi:
Substances chimiques
Uridine
WHI7HQ7H85
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1589-1597Références
Loffler M, Carrey EA, Zameitat E. New perspectives on the roles of pyrimidines in the central nervous system. Nucleosides Nucleotides Nucl Acids. 2018;37:290–306.
doi: 10.1080/15257770.2018.1453076
Koch J, Mayr JA, Alhaddad B, et al. CAD mutations and uridine-responsive epileptic encephalopathy. Brain. 2017;140:279–286.
doi: 10.1093/brain/aww300
Ng SB, Buckingham KJ, Lee C, et al. Exome sequencing identifies the cause of a mendelian disorder. Nat Genet. 2010;42:30–35.
doi: 10.1038/ng.499
Huguley CM Jr, Bain JA, Rivers SL, Scoggins RB. Refractory megaloblastic anemia associated with excretion of orotic acid. Blood. 1959;14:615–634.
doi: 10.1182/blood.V14.6.615.615
Wortmann SB, Chen MA, Colombo R, et al. Mild orotic aciduria in UMPS heterozygotes: a metabolic finding without clinical consequences. J Inherit Metab Dis. 2017;40:423–431.
doi: 10.1007/s10545-017-0015-9
Zhou L, Xu H, Wang T, Wu Y. A patient with CAD deficiency responsive to uridine and literature review. Front Neurol. 2020;11:64.
doi: 10.3389/fneur.2020.00064
van Karnebeek CDM, Sayson B, Lee JJY, et al. Metabolic evaluation of epilepsy: a diagnostic algorithm with focus on treatable conditions. Front Neurol. 2018;9:1016.
doi: 10.3389/fneur.2018.01016
Bailey CJ. Orotic aciduria and uridine monophosphate synthase: a reappraisal. J Inherit Metab Dis. 2009;32(Suppl 1):S227–233.
doi: 10.1007/s10545-009-1176-y
del Caño-Ochoa F, Ng BG, Abedalthagafi M, et al. Cell-based analysis of CAD variants identifies individuals likely to benefit from uridine therapy. Genet Med. 28 May 2020; https://doi.org/10.1038/s41436-020-0833-2 [Epub ahead of print].
Ng BG, Wolfe LA, Ichikawa M, et al. Biallelic mutations in CAD, impair de novo pyrimidine biosynthesis and decrease glycosylation precursors. Hum Mol Genet. 2015;24:3050–3057.
doi: 10.1093/hmg/ddv057
Russo R, Andolfo I, Manna F, et al. Multi-gene panel testing improves diagnosis and management of patients with hereditary anemias. Am J Hematol. 2018;93:672–682.
doi: 10.1002/ajh.25058
Wagner M, Berutti R, Lorenz-Depiereux B, et al. Mitochondrial DNA mutation analysis from exome sequencing—a more holistic approach in diagnostics of suspected mitochondrial disease. J Inherit Metab Dis. 2019;42:909–917.
doi: 10.1002/jimd.12109
Wagner M, Levy J, Jung-Klawitter S. et al. Loss of TNR causes a nonprogressive neurodevelopmental disorder with spasticity and transient opisthotonus. Genet Med. 2020;22:1061–1068.
doi: 10.1038/s41436-020-0768-7
Cansev M. Uridine and cytidine in the brain: their transport and utilization. Brain Res Rev. 2006;52:389–397.
doi: 10.1016/j.brainresrev.2006.05.001
Urasaki Y, Pizzorno G, Le TT. Chronic uridine administration induces fatty liver and pre-diabetic conditions in mice. PLoS One. 2016;11:e0146994.
doi: 10.1371/journal.pone.0146994
Wortmann SB, Zietkiewicz S, Kousi M, et al. CLPB mutations cause 3-methylglutaconic aciduria, progressive brain atrophy, intellectual disability, congenital neutropenia, cataracts, movement disorder. Am J Hum Genet. 2015;96:245–257.
doi: 10.1016/j.ajhg.2014.12.013
Janas LM, Picciano MF. The nucleotide profile of human milk. Pediatr Res. 1982;16:659–662.
doi: 10.1203/00006450-198208000-00014
Andermann A, Blancquaert I, Beauchamp S, Dery V. Revisiting Wilson and Jungner in the genomic age: a review of screening criteria over the past 40 years. Bull World Health Organ. 2008;86:317–319.
doi: 10.2471/BLT.07.050112
Ceyhan-Birsoy O, Murry JB, Machini K, et al. Interpretation of genomic sequencing results in healthy and ill newborns: results from the BabySeq Project. Am J Hum Genet. 2019;104:76–93.
doi: 10.1016/j.ajhg.2018.11.016