Targeting brain metastases with ultrasmall theranostic nanoparticles, a first-in-human trial from an MRI perspective.
Journal
Science advances
ISSN: 2375-2548
Titre abrégé: Sci Adv
Pays: United States
ID NLM: 101653440
Informations de publication
Date de publication:
07 2020
07 2020
Historique:
received:
26
06
2019
accepted:
06
04
2020
entrez:
25
8
2020
pubmed:
25
8
2020
medline:
25
8
2020
Statut:
epublish
Résumé
The use of radiosensitizing nanoparticles with both imaging and therapeutic properties on the same nano-object is regarded as a major and promising approach to improve the effectiveness of radiotherapy. Here, we report the MRI findings of a phase 1 clinical trial with a single intravenous administration of Gd-based AGuIX nanoparticles, conducted in 15 patients with four types of brain metastases (melanoma, lung, colon, and breast). The nanoparticles were found to accumulate and to increase image contrast in all types of brain metastases with MRI enhancements equivalent to that of a clinically used contrast agent. The presence of nanoparticles in metastases was monitored and quantified with MRI and was noticed up to 1 week after their administration. To take advantage of the radiosensitizing property of the nanoparticles, patients underwent radiotherapy sessions following their administration. This protocol has been extended to a multicentric phase 2 clinical trial including 100 patients.
Identifiants
pubmed: 32832613
doi: 10.1126/sciadv.aay5279
pii: aay5279
pmc: PMC7439298
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
eaay5279Informations de copyright
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Références
Rofo. 2015 Dec;187(12):1108-15
pubmed: 26361379
Eur J Cancer. 2009 Jan;45(2):228-47
pubmed: 19097774
Nanomedicine (Lond). 2016 Sep;11(18):2405-17
pubmed: 27529506
ACS Nano. 2011 Dec 27;5(12):9566-74
pubmed: 22040385
J Nanobiotechnology. 2016 Jul 28;14(1):63
pubmed: 27464501
Cancer Nanotechnol. 2014;5(1):6
pubmed: 25328549
Cancer Nanotechnol. 2014;5(1):4
pubmed: 26561512
Angew Chem Int Ed Engl. 2011 Dec 16;50(51):12299-303
pubmed: 22057640
Nanomedicine. 2015 Jan;11(1):247-57
pubmed: 24983891
Sci Transl Med. 2014 Oct 29;6(260):260ra149
pubmed: 25355699
MAGMA. 2014 Aug;27(4):303-16
pubmed: 24170416
Lancet Oncol. 2015 Jun;16(6):e270-8
pubmed: 26065612
Sci Transl Med. 2013 Feb 20;5(173):173sr2
pubmed: 23427246
Nat Rev Dis Primers. 2019 Jan 17;5(1):5
pubmed: 30655533
Clin Cancer Res. 2001 Feb;7(2):243-54
pubmed: 11234875
Theranostics. 2015 Jun 11;5(9):1030-44
pubmed: 26155318
Lancet Oncol. 2019 Aug;20(8):1148-1159
pubmed: 31296491
J Nanosci Nanotechnol. 2011 Sep;11(9):7833-9
pubmed: 22097494
Invest Radiol. 2005 Nov;40(11):715-24
pubmed: 16230904
Nat Rev Clin Oncol. 2016 Oct;13(10):627-42
pubmed: 27245279
Br J Radiol. 2019 Jan;92(1093):20180365
pubmed: 30226413
Theranostics. 2018 Feb 12;8(7):1824-1849
pubmed: 29556359
Nanomedicine (Lond). 2016 May;11(9):997-9
pubmed: 27074108
BMJ Open. 2019 Feb 11;9(2):e023591
pubmed: 30755445
Proc Natl Acad Sci U S A. 2014 Jun 24;111(25):9247-52
pubmed: 24927562
Theranostics. 2016 Jan 20;6(3):418-27
pubmed: 26909115
Chem Rev. 2017 Feb 8;117(3):901-986
pubmed: 28045253
Small. 2015 Jan 14;11(2):215-21
pubmed: 25201285
Sci Rep. 2011;1:18
pubmed: 22355537
Radiother Oncol. 2018 Jun;127(3):460-466
pubmed: 29807837