Alteration of genome folding via contact domain boundary insertion.


Journal

Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904

Informations de publication

Date de publication:
10 2020
Historique:
received: 25 08 2019
accepted: 23 07 2020
pubmed: 2 9 2020
medline: 25 11 2020
entrez: 2 9 2020
Statut: ppublish

Résumé

Animal chromosomes are partitioned into contact domains. Pathogenic domain disruptions can result from chromosomal rearrangements or perturbation of architectural factors. However, such broad-scale alterations are insufficient to define the minimal requirements for domain formation. Moreover, to what extent domains can be engineered is just beginning to be explored. In an attempt to create contact domains, we inserted a 2-kb DNA sequence underlying a tissue-invariant domain boundary-containing a CTCF-binding site (CBS) and a transcription start site (TSS)-into 16 ectopic loci across 11 chromosomes, and characterized its architectural impact. Depending on local constraints, this fragment variably formed new domains, partitioned existing ones, altered compartmentalization and initiated contacts reflecting chromatin loop extrusion. Deletions of the CBS or the TSS individually or in combination within inserts revealed its distinct contributions to genome folding. Altogether, short DNA insertions can suffice to shape the spatial genome in a manner influenced by chromatin context.

Identifiants

pubmed: 32868908
doi: 10.1038/s41588-020-0680-8
pii: 10.1038/s41588-020-0680-8
pmc: PMC7541666
mid: NIHMS1614764
doi:

Substances chimiques

CCCTC-Binding Factor 0
CTCF protein, human 0
Chromatin 0
DNA-Binding Proteins 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1076-1087

Subventions

Organisme : NIMH NIH HHS
ID : R01 MH120269
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK054937
Pays : United States
Organisme : NIDDK NIH HHS
ID : R24 DK106766
Pays : United States
Organisme : NIDDK NIH HHS
ID : U01 DK127405
Pays : United States
Organisme : NHLBI NIH HHS
ID : U01 HL129998
Pays : United States

Commentaires et corrections

Type : CommentIn

Références

Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).
pubmed: 19815776 pmcid: 2858594 doi: 10.1126/science.1181369
Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).
pubmed: 22495304 pmcid: 3555144 doi: 10.1038/nature11049
Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).
pubmed: 22495300 pmcid: 3356448 doi: 10.1038/nature11082
Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).
pubmed: 25497547 pmcid: 5635824 doi: 10.1016/j.cell.2014.11.021
Phillips-Cremins, J. E. et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153, 1281–1295 (2013).
pubmed: 23706625 pmcid: 3712340 doi: 10.1016/j.cell.2013.04.053
Schwarzer, W. et al. Two independent modes of chromatin organization revealed by cohesin removal. Nature 551, 51–56 (2017).
pubmed: 29094699 pmcid: 5687303 doi: 10.1038/nature24281
Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320.e24 (2017).
pubmed: 28985562 pmcid: 5846482 doi: 10.1016/j.cell.2017.09.026
Rowley, M. J. et al. Evolutionarily conserved principles predict 3D chromatin organization. Mol. Cell 67, 837–852.e7 (2017).
pubmed: 28826674 pmcid: 5591081 doi: 10.1016/j.molcel.2017.07.022
Nora, E. P. et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169, 930–944.e22 (2017).
pubmed: 28525758 pmcid: 5538188 doi: 10.1016/j.cell.2017.05.004
Hug, C. B., Grimaldi, A. G., Kruse, K. & Vaquerizas, J. M. Chromatin architecture emerges during zygotic genome activation independent of transcription. Cell 169, 216–228.e19 (2017).
pubmed: 28388407 doi: 10.1016/j.cell.2017.03.024
Franke, M. et al. Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature 538, 265–269 (2016).
pubmed: 27706140 doi: 10.1038/nature19800
Vietri Rudan, M. et al. Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Rep. 10, 1297–1309 (2015).
pubmed: 25732821 pmcid: 4542312 doi: 10.1016/j.celrep.2015.02.004
Fudenberg, G. & Pollard, K. S. Chromatin features constrain structural variation across evolutionary timescales. Proc. Natl Acad. Sci. USA 116, 2175–2180 (2019).
pubmed: 30659153 pmcid: 6369792 doi: 10.1073/pnas.1808631116
Symmons, O. et al. The shh topological domain facilitates the action of remote enhancers by reducing the effects of genomic distances. Dev. Cell 39, 529–543 (2016).
pubmed: 27867070 pmcid: 5142843 doi: 10.1016/j.devcel.2016.10.015
Lupiáñez, D. et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161, 1012–1025 (2015).
pubmed: 25959774 pmcid: 4791538 doi: 10.1016/j.cell.2015.04.004
Narendra, V. et al. CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation. Science 347, 1017–1021 (2015).
pubmed: 25722416 pmcid: 4428148
Flavahan, W. A. et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529, 110–114 (2016).
pubmed: 26700815 doi: 10.1038/nature16490
Hnisz, D. et al. Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science 351, 1454–1458 (2016).
pubmed: 26940867 pmcid: 4884612 doi: 10.1126/science.aad9024
Zhang, Y. et al. Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells. Nat. Genet. 51, 1380–1388 (2019).
pubmed: 31427791 pmcid: 6722002 doi: 10.1038/s41588-019-0479-7
Barutcu, A. R., Maass, P. G., Lewandowski, J. P., Weiner, C. L. & Rinn, J. L. A TAD boundary is preserved upon deletion of the CTCF-rich Firre locus. Nat. Commun. 9, 1444 (2018).
pubmed: 29654311 pmcid: 5899154 doi: 10.1038/s41467-018-03614-0
Mátés, L. et al. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat. Genet. 41, 753–761 (2009).
doi: 10.1038/ng.343 pubmed: 19412179
Carette, J. E. et al. Ebola virus entry requires the cholesterol transporter Niemann–Pick C1. Nature 477, 340–343 (2011).
pubmed: 21866103 pmcid: 3175325 doi: 10.1038/nature10348
Haarhuis, J. H. I. et al. The cohesin release factor WAPL restricts chromatin loop extension. Cell 169, 693–707.e14 (2017).
pubmed: 28475897 pmcid: 5422210 doi: 10.1016/j.cell.2017.04.013
Van Bortle, K. et al. Insulator function and topological domain border strength scale with architectural protein occupancy. Genome Biol. 15, R82 (2014).
pubmed: 24981874 pmcid: 4226948 doi: 10.1186/gb-2014-15-5-r82
Mayer, A. et al. Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution. Cell 161, 541–554 (2015).
pubmed: 25910208 pmcid: 4528962 doi: 10.1016/j.cell.2015.03.010
Vian, L. et al. The energetics and physiological impact of cohesin extrusion. Cell 173, 1165–1178.e20 (2018).
pubmed: 29706548 pmcid: 6065110 doi: 10.1016/j.cell.2018.03.072
Redolfi, J. et al. DamC reveals principles of chromatin folding in vivo without crosslinking and ligation. Nat. Struct. Mol. Biol. 26, 471–480 (2019).
pubmed: 31133702 pmcid: 6561777 doi: 10.1038/s41594-019-0231-0
Sanborn, A. L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl Acad. Sci. USA 112, 6456 (2015).
Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016).
pubmed: 27210764 pmcid: 4889513 doi: 10.1016/j.celrep.2016.04.085
Dixon, J. R. et al. Chromatin architecture reorganization during stem cell differentiation. Nature 518, 331–336 (2015).
pubmed: 25693564 pmcid: 4515363 doi: 10.1038/nature14222
Krijger, P. H. L. et al. Cell-of-origin-specific 3D genome structure acquired during somatic cell reprogramming. Cell Stem Cell 18, 597–610 (2016).
pubmed: 26971819 pmcid: 4858530 doi: 10.1016/j.stem.2016.01.007
Ke, Y. et al. 3D chromatin structures of mature gametes and structural reprogramming during mammalian embryogenesis. Cell 170, 367–381.e20 (2017).
pubmed: 28709003 doi: 10.1016/j.cell.2017.06.029
Du, Z. et al. Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature 547, 232–235 (2017).
pubmed: 28703188 doi: 10.1038/nature23263
Heinz, S. et al. Transcription elongation can affect genome 3D structure. Cell 174, 1522–1536.e22 (2018).
pubmed: 30146161 pmcid: 6130916 doi: 10.1016/j.cell.2018.07.047
Gong, Y. et al. Stratification of TAD boundaries reveals preferential insulation of super-enhancers by strong boundaries. Nat. Commun. 9, 542 (2018).
pubmed: 29416042 pmcid: 5803259 doi: 10.1038/s41467-018-03017-1
Hughes, J. R. et al. Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nat. Genet. 46, 205–212 (2014).
pubmed: 24413732 doi: 10.1038/ng.2871
Nuebler, J., Fudenberg, G., Imakaev, M., Abdennur, N. & Mirny, L. A. Chromatin organization by an interplay of loop extrusion and compartmental segregation. Proc. Natl Acad. Sci. USA 115, E6697–E6706 (2018).
pubmed: 29967174 pmcid: 6055145 doi: 10.1073/pnas.1717730115
Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213–227 (2012).
pubmed: 22265413 doi: 10.1016/j.cell.2011.11.031
Zhao, J. et al. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc. Natl Acad. Sci. USA 109, 5322–5327 (2012).
pubmed: 22421439 pmcid: 3325682 doi: 10.1073/pnas.1200012109
Galluzzi, L., Buqué, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2017).
pubmed: 27748397 doi: 10.1038/nri.2016.107
Shan, B., Pan, H., Najafov, A. & Yuan, J. Necroptosis in development and diseases. Genes Dev. 32, 327–340 (2018).
pubmed: 29593066 pmcid: 5900707 doi: 10.1101/gad.312561.118
Yuan, J., Amin, P. & Ofengeim, D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat. Rev. Neurosci. 20, 19–33 (2019).
pubmed: 30467385 pmcid: 6342007 doi: 10.1038/s41583-018-0093-1
Chung, C. C. et al. Meta-analysis identifies four new loci associated with testicular germ cell tumor. Nat. Genet. 45, 680–685 (2013).
pubmed: 23666239 pmcid: 3723930 doi: 10.1038/ng.2634
Astle, W. J. et al. The allelic landscape of human blood cell trait variation and links to common complex disease. Cell 167, 1415–1429.e19 (2016).
pubmed: 27863252 pmcid: 5300907 doi: 10.1016/j.cell.2016.10.042
Mitchell, J. S. et al. Genome-wide association study identifies multiple susceptibility loci for multiple myeloma. Nat. Commun. 7, 12050 (2016).
pubmed: 27363682 pmcid: 4932178 doi: 10.1038/ncomms12050
Hou, C., Zhao, H., Tanimoto, K. & Dean, A. CTCF-dependent enhancer-blocking by alternative chromatin loop formation. Proc. Natl Acad. Sci. USA 105, 20398–20403 (2008).
pubmed: 19074263 pmcid: 2629272 doi: 10.1073/pnas.0808506106
Rawat, P., Jalan, M., Sadhu, A., Kanaujia, A. & Srivastava, M. Chromatin domain organization of the TCRb locus and its perturbation by ectopic CTCF binding. Mol. Cell Biol. 37, e00557–16 (2017).
pubmed: 28137913 pmcid: 5394274 doi: 10.1128/MCB.00557-16
Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).
pubmed: 23287718 pmcid: 3795411 doi: 10.1126/science.1231143
Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).
pubmed: 23287722 pmcid: 3712628 doi: 10.1126/science.1232033
Busslinger, G. A. et al. Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl. Nature 544, 503–507 (2017).
pubmed: 28424523 pmcid: 6080695 doi: 10.1038/nature22063
Despang, A. et al. Functional dissection of the Sox9—Kcnj2 locus identifies nonessential and instructive roles of TAD architecture. Nat. Genet 51, 1263–1271 (2019).
pubmed: 31358994 doi: 10.1038/s41588-019-0466-z
Choudhary, M. N. et al. Co-opted transposons help perpetuate conserved higher-order chromosomal structures. Genome Biol. 21, 16 (2020).
pubmed: 31973766 pmcid: 6979391 doi: 10.1186/s13059-019-1916-8
Karijolich, J., Zhao, Y., Alla, R. & Glaunsinger, B. Genome-wide mapping of infection-induced SINE RNAs reveals a role in selective mRNA export. Nucleic Acids Res. 45, 6194–6208 (2017).
pubmed: 28334904 pmcid: 5449642 doi: 10.1093/nar/gkx180
Zhang, H. et al. Chromatin structure dynamics during the mitosis-to-G1 phase transition. Nature 576, 158–162 (2019).
pubmed: 31776509 pmcid: 6895436 doi: 10.1038/s41586-019-1778-y
Sundaram, V. et al. Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res. 24, 1963–1976 (2014).
pubmed: 25319995 pmcid: 4248313 doi: 10.1101/gr.168872.113
Schmidt, D. et al. Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell 148, 335–348 (2012).
pubmed: 22244452 pmcid: 3368268 doi: 10.1016/j.cell.2011.11.058
Bourque, G. et al. Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res. 18, 1752–1762 (2008).
pubmed: 18682548 pmcid: 2577865 doi: 10.1101/gr.080663.108
Thybert, D. et al. Repeat associated mechanisms of genome evolution and function revealed by the Mus caroli and Mus pahari genomes. Genome Res. 28, 448–459 (2018).
pubmed: 29563166 pmcid: 5880236 doi: 10.1101/gr.234096.117
Jin, F. et al. A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 503, 290–294 (2013).
pubmed: 24141950 pmcid: 3838900 doi: 10.1038/nature12644
Zhang, Y. et al. Chromatin connectivity maps reveal dynamic promoter-enhancer long-range associations. Nature 504, 306–310 (2013).
pubmed: 24213634 pmcid: 3954713 doi: 10.1038/nature12716
Kentepozidou, E. et al. Clustered CTCF binding is an evolutionary mechanism to maintain topologically associating domains. Genome Biol. 21, 5 (2020).
pubmed: 31910870 pmcid: 6945661 doi: 10.1186/s13059-019-1894-x
Rowley, M. J. & Corces, V. G. Organizational principles of 3D genome architecture. Nat. Rev. Genet. 19, 789–800 (2018).
pubmed: 30367165 doi: 10.1038/s41576-018-0060-8
Zhan, Y. et al. Reciprocal insulation analysis of Hi-C data shows that TADs represent a functionally but not structurally privileged scale in the hierarchical folding of chromosomes. Genome Res. 27, 479–490 (2017).
pubmed: 28057745 pmcid: 5340975 doi: 10.1101/gr.212803.116
Hsieh, T. S. et al. Resolving the 3D landscape of transcription-linked mammalian chromatin folding. Mol. Cell 78, 539–553.e8 (2020).
pubmed: 32213323 pmcid: 7703524 doi: 10.1016/j.molcel.2020.03.002
Krietenstein, N. et al. Ultrastructural details of mammalian chromosome architecture. Mol. Cell 78, 554–565.e7 (2020).
pubmed: 32213324 pmcid: 7222625 doi: 10.1016/j.molcel.2020.03.003
Kurita, R. et al. Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells. PLoS ONE 8, e59890 (2013).
pubmed: 23533656 pmcid: 3606290 doi: 10.1371/journal.pone.0059890
Zayed, H., Izsvák, Z., Walisko, O. & Ivics, Z. Development of hyperactive sleeping beauty transposon vectors by mutational analysis. Mol. Ther. 9, 292–304 (2004).
pubmed: 14759813 doi: 10.1016/j.ymthe.2003.11.024
Huang, P. et al. Comparative analysis of three-dimensional chromosomal architecture identifies a novel fetal hemoglobin regulatory element. Genes Dev. 31, 1704–1713 (2017).
pubmed: 28916711 pmcid: 5647940 doi: 10.1101/gad.303461.117
Davies, J. O. J. et al. Multiplexed analysis of chromosome conformation at vastly improved sensitivity. Nat. Methods 13, 74–80 (2016).
pubmed: 26595209 doi: 10.1038/nmeth.3664
Hsiung, C. C.- et al. A hyperactive transcriptional state marks genome reactivation at the mitosis-G1 transition. Genes Dev. 30, 1423–1439 (2016).
pubmed: 27340175 pmcid: 4926865 doi: 10.1101/gad.280859.116
Hsiau, T. et al. Inference of CRISPR edits from Sanger trace data. Preprint at bioRxiv https://doi.org/10.1101/251082 (2019).
Kim, S., Kim, D., Cho, S. W., Kim, J. & Kim, J. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24, 1012–1019 (2014).
pubmed: 24696461 pmcid: 4032847 doi: 10.1101/gr.171322.113
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278 pmcid: 2832824
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
doi: 10.1038/nature11247
Sloan, C. A. et al. ENCODE data at the ENCODE portal. Nucleic Acids Res. 44, 726–732 (2016).
doi: 10.1093/nar/gkv1160
Kerpedjiev, P. et al. HiGlass: web-based visual exploration and analysis of genome interaction maps. Genome Biol. 19, 125 (2018).
pubmed: 30143029 pmcid: 6109259 doi: 10.1186/s13059-018-1486-1
Forcato, M. et al. Comparison of computational methods for Hi-C data analysis. Nat. Methods 14, 679–685 (2017).
pubmed: 28604721 pmcid: 5493985 doi: 10.1038/nmeth.4325
Crane, E. et al. Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature 523, 240–244 (2015).
pubmed: 26030525 pmcid: 4498965 doi: 10.1038/nature14450
Filippova, D., Patro, R., Duggal, G. & Kingsford, C. Identification of alternative topological domains in chromatin. Algorithms Mol. Biol. 9, 14 (2014).
pubmed: 24868242 pmcid: 4019371 doi: 10.1186/1748-7188-9-14
Eisenberg, E. & Levanon, E. Y. Human housekeeping genes, revisited. Trends Genet. 29, 569–574 (2013).
pubmed: 23810203 doi: 10.1016/j.tig.2013.05.010
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286 pmcid: 3322381 doi: 10.1038/nmeth.1923
Li, H. et al. The sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943 pmcid: 2723002 doi: 10.1093/bioinformatics/btp352
Imakaev, M. et al. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat. Methods 9, 999–1003 (2012).
pubmed: 22941365 pmcid: 3816492 doi: 10.1038/nmeth.2148
Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).
pubmed: 26619908 pmcid: 4665391 doi: 10.1186/s13059-015-0831-x
Gilgenast, T. G. & Phillips-Cremins, J. E. Systematic evaluation of statistical methods for identifying looping interactions in 5C data. Cell Syst. 8, 197–211.e13 (2019).
pubmed: 30904376 pmcid: 6696950 doi: 10.1016/j.cels.2019.02.006
Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).
doi: 10.1109/MCSE.2007.55
Ambrosini, G., Groux, R. & Bucher, P. PWMScan: a fast tool for scanning entire genomes with a position-specific weight matrix. Bioinformatics 34, 2483–2484 (2018).
pubmed: 29514181 pmcid: 6041753 doi: 10.1093/bioinformatics/bty127
Khan, A. et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 46, D260–D266 (2018).
pubmed: 29140473 doi: 10.1093/nar/gkx1126
Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).
pubmed: 27467249 pmcid: 5846465 doi: 10.1016/j.cels.2016.07.002
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).
doi: 10.14806/ej.17.1.200
Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).
pubmed: 21903629 pmcid: 3198573 doi: 10.1093/bioinformatics/btr507
Langmead, B. Aligning short sequencing reads with Bowtie. Curr. Protoc. Bioinform. Chapter 11, Unit 11.7 (2010).
Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).
pubmed: 18798982 pmcid: 2592715 doi: 10.1186/gb-2008-9-9-r137
Xu, S., Grullon, S., Ge, K. & Peng, W. Spatial clustering for identification of ChIP-enriched regions (SICER) to map regions of histone methylation patterns in embryonic stem cells. Methods Mol. Biol. 1150, 97–111 (2014).
pubmed: 24743992 pmcid: 4152844 doi: 10.1007/978-1-4939-0512-6_5
Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).
pubmed: 27079975 pmcid: 4987876 doi: 10.1093/nar/gkw257
Ross-Innes, C. S. et al. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481, 389–393 (2012).
pubmed: 22217937 pmcid: 3272464 doi: 10.1038/nature10730
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon: fast and bias-aware quantification of transcript expression using dual-phase inference. Nat. Methods 14, 417–419 (2017).
pubmed: 28263959 pmcid: 5600148 doi: 10.1038/nmeth.4197
Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research 4, 1521 (2015).
pubmed: 26925227 doi: 10.12688/f1000research.7563.1
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
doi: 10.1093/bioinformatics/bts635 pubmed: 23104886
Weiss, M. J., Yu, C. & Orkin, S. H. Erythroid-cell-specific properties of transcription factor GATA-1 revealed by phenotypic rescue of a gene-targeted cell line. Mol. Cell. Biol. 17, 1642–1651 (1997).
pubmed: 9032291 pmcid: 231889 doi: 10.1128/MCB.17.3.1642
Norton, H. K. et al. Detecting hierarchical genome folding with network modularity. Nat. Methods 15, 119–122 (2018).
pubmed: 29334377 pmcid: 6029251 doi: 10.1038/nmeth.4560

Auteurs

Di Zhang (D)

Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA. dizhang.penn@gmail.com.
Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. dizhang.penn@gmail.com.

Peng Huang (P)

Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.

Malini Sharma (M)

Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.

Cheryl A Keller (CA)

Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA, USA.

Belinda Giardine (B)

Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA, USA.

Haoyue Zhang (H)

Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.

Thomas G Gilgenast (TG)

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.

Jennifer E Phillips-Cremins (JE)

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA.

Ross C Hardison (RC)

Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA, USA.

Gerd A Blobel (GA)

Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA. blobel@email.chop.edu.
Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. blobel@email.chop.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH