CLR01 protects dopaminergic neurons in vitro and in mouse models of Parkinson's disease.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
28 09 2020
Historique:
received: 09 05 2019
accepted: 27 08 2020
entrez: 28 9 2020
pubmed: 29 9 2020
medline: 23 10 2020
Statut: epublish

Résumé

Parkinson's disease (PD) affects millions of patients worldwide and is characterized by alpha-synuclein aggregation in dopamine neurons. Molecular tweezers have shown high potential as anti-aggregation agents targeting positively charged residues of proteins undergoing amyloidogenic processes. Here we report that the molecular tweezer CLR01 decreased aggregation and toxicity in induced pluripotent stem cell-derived dopaminergic cultures treated with PD brain protein extracts. In microfluidic devices CLR01 reduced alpha-synuclein aggregation in cell somas when axonal terminals were exposed to alpha-synuclein oligomers. We then tested CLR01 in vivo in a humanized alpha-synuclein overexpressing mouse model; mice treated at 12 months of age when motor defects are mild exhibited an improvement in motor defects and a decreased oligomeric alpha-synuclein burden. Finally, CLR01 reduced alpha-synuclein-associated pathology in mice injected with alpha-synuclein aggregates into the striatum or substantia nigra. Taken together, these results highlight CLR01 as a disease-modifying therapy for PD and support further clinical investigation.

Identifiants

pubmed: 32985503
doi: 10.1038/s41467-020-18689-x
pii: 10.1038/s41467-020-18689-x
pmc: PMC7522721
doi:

Substances chimiques

Bridged-Ring Compounds 0
CLR01 compound 0
Organophosphates 0
Protective Agents 0
Protein Aggregates 0
alpha-Synuclein 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

4885

Subventions

Organisme : Medical Research Council
ID : MR/N029453/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : G0700932
Pays : United Kingdom
Organisme : Parkinson's UK
ID : G-1504
Pays : United Kingdom
Organisme : NIA NIH HHS
ID : R01 AG050721
Pays : United States
Organisme : Parkinson's UK
ID : H-1003
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/L023784/1
Pays : United Kingdom
Organisme : Parkinson's UK
ID : G-0803
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/L023784/2
Pays : United Kingdom
Organisme : Parkinson's UK
ID : G-1103
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/J004324/1
Pays : United Kingdom
Organisme : Parkinson's UK
ID : J-0901
Pays : United Kingdom
Organisme : Parkinson's UK
ID : G-1305
Pays : United Kingdom
Organisme : Parkinson's UK
ID : G-0808
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/K013866/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_EX_MR/N50192X/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/M024962/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/P007058/1
Pays : United Kingdom

Références

Obeso, J. A. et al. Past, present, and future of Parkinson’s disease: a special essay on the 200th Anniversary of the Shaking Palsy. Mov. Disord. 32, 1264–1310 (2017).
pubmed: 28887905 pmcid: 5685546
Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211 (2003).
pubmed: 12498954
Bengoa-Vergniory, N., Roberts, R. F., Wade-Martins, R. & Alegre-Abarrategui, J. Alpha-synuclein oligomers: a new hope. Acta Neuropathol. 134, 819–838 (2017).
pubmed: 28803412 pmcid: 5663814
Attar, A. & Bitan, G. Disrupting self-assembly and toxicity of amyloidogenic protein oligomers by “molecular tweezers”-from the test tube to animal models. Curr. Pharm. Des. 20, 2469–2483 (2014).
Schrader, T., Bitan, G. & Klärner, F. G. Molecular tweezers for lysine and arginine-powerful inhibitors of pathologic protein aggregation. Chem. Commun. 52, 11318–11334 (2016).
Plotegher, N. & Bubacco, L. Lysines, Achilles’ heel in alpha-synuclein conversion to a deadly neuronal endotoxin. Ageing Res. Rev. 26, 62–71 (2016).
pubmed: 26690800
Prabhudesai, S. et al. A novel ‘molecular tweezer’ inhibitor of α-synuclein neurotoxicity in vitro and in vivo. Neurotherapeutics 9, 464–476 (2012).
pubmed: 22373667 pmcid: 3337029
Attar, A. et al. Protection of primary neurons and mouse brain from Alzheimer’s pathology by molecular tweezers. Brain 135, 3735–3748 (2012).
pubmed: 23183235 pmcid: 3525056
Kriks, S. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480, 547–551 (2011).
pubmed: 22056989 pmcid: 3245796
Fernandes, H. J. R. et al. ER stress and autophagic perturbations lead to elevated extracellular α-synuclein in GBA-N370S Parkinson’s iPSC-derived dopamine neurons. Stem Cell Rep. 6, 342–356 (2016).
Lang, C. et al. Single-cell sequencing of iPSC-dopamine neurons reconstructs disease progression and identifies HDAC4 as a regulator of Parkinson cell phenotypes. Cell Stem Cell 24, 93–106.e6 (2018).
pubmed: 30503143
Janezic, S. et al. Deficits in dopaminergic transmission precede neuron loss and dysfunction in a new Parkinson model. Proc. Natl Acad. Sci. 110, E4016–E4025 (2013).
pubmed: 24082145
Recasens, A. et al. Lewy body extracts from Parkinson disease brains trigger α-synuclein pathology and neurodegeneration in mice and monkeys. Ann. Neurol. 75, 351–362 (2014).
pubmed: 24243558
Attar, A., Chan, W.-T. C., Klärner, F.-G., Schrader, T. & Bitan, G. Safety and pharmacological characterization of the molecular tweezer CLR01 - a broad-spectrum inhibitor of amyloid proteins’ toxicity. BMC Pharmacol. Toxicol. 15, 23 (2014).
pubmed: 24735982 pmcid: 3996151
Bourdenx, M. et al. Identification of distinct pathological signatures induced by patient-derived α-synuclein structures in nonhuman primates. Sci. Adv. 6, eaaz9165 (2020).
pubmed: 32426502 pmcid: 7220339
Soria, F. N. et al. Synucleinopathy alters nanoscale organization and diffusion in the brain extracellular space through hyaluronan remodeling. Nat. Commun. 11, 3440 (2020).
Roberts, R. F., Wade-Martins, R. & Alegre-Abarrategui, J. Direct visualization of alpha-synuclein oligomers reveals previously undetected pathology in Parkinson’s disease brain. Brain 138, 1642–1657 (2015).
pubmed: 25732184 pmcid: 4614141
McMillan, K. J. et al. Loss of microRNA-7 regulation leads to α-synuclein accumulation and dopaminergic neuronal loss in vivo. Mol. Ther. 25, 2404–2414 (2017).
pubmed: 28927576 pmcid: 5628933
Burke, R. E. & O’Malley, K. Axon degeneration in Parkinson’s disease. Exp. Neurol. 246, 72–83 (2013).
pubmed: 22285449
Cavaliere, F. et al. In vitro α-synuclein neurotoxicity and spreading among neurons and astrocytes using Lewy body extracts from Parkinson disease brains. Neurobiol. Dis. 103, 101–112 (2017).
pubmed: 28411117
Saeed-Vafa, D. et al. Combining radiomics and mathematical modeling to elucidate mechanisms of resistance to immune checkpoint blockade in non-small cell lung cancer. Preprint at https://doi.org/10.1101/190561 (2017).
Brown, L. V., Gaffney, E. A., Wagg, J. & Coles, M. C. An in silico model of cytotoxic T-lymphocyte activation in the lymph node following short peptide vaccination. J. R. Soc. Interface 15, 20180041 (2018).
Shah, D. K. & Betts, A. M. Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J. Pharmacokinet. Pharmacodyn. 39, 67–86 (2012).
pubmed: 22143261
Brown, L. V., Gaffney, E. A., Wagg, J. & Coles, M. C. Applications of mechanistic modelling to clinical and experimental immunology: an emerging technology to accelerate immunotherapeutic discovery and development. Clin. Exp. Immunol. 193, 284–292 (2018).
pubmed: 30240512 pmcid: 6150250
Corona, J. C. & Duchen, M. R. PPARg and PGC-1a as therapeutic targets in Parkinson’s. Neurochem. Res. 40, 308–316 (2015).
pubmed: 25007880
Alvarez-Erviti, L. et al. Chaperone-mediated autophagy markers in Parkinson disease brains. Arch. Neurol. 67, 1464–1472 (2010).
pubmed: 20697033
Zheng, B. et al. PGC-1α, a potential therapeutic target for early intervention in Parkinson’s disease. Sci. Transl. Med. 2, 52ra73 (2010).
Cuervo, A. M. & Wong, E. Chaperone-mediated autophagy: Roles in disease and aging. Cell Res. 24, 92–104 (2014).
pubmed: 24281265
Luk, K. C. et al. Pathological α-synuclein transmission in nontransgenic mice. Science 949, 949–953 (2012).
Xia, Q. et al. Proteomic identification of novel proteins associated with Lewy bodies. Front. Biosci. 13, 3850–3856 (2008).
pubmed: 18508479 pmcid: 2663966
Shahmoradian, S. H. et al. Lewy pathology in Parkinson’s disease consists of crowded organelles and lipid membranes. Nat. Neurosci. 22, 1099–1109 (2019).
Curran, S. & Wrigley, M. Lewy bodies. Am. J. Psychiatry 154, 1322–1323 (1997).
pubmed: 9286208
O’Keeffe, G. W. & Sullivan, A. M. Evidence for dopaminergic axonal degeneration as an early pathological process in Parkinson’s disease. Park. Relat. Disord. 56, 9–15 (2018).
Antonini, A. & DeNotaris, R. PET and SPECT functional imaging in Parkinson’s disease. Sleep. Med 5, 201–206 (2004).
pubmed: 15033144
Varrone, A., Marek, K. L., Jennings, D., Innis, R. B. & Seibyl, J. P. [123I]β-CIT SPECT imaging demonstrates reduced density of striatal dopamine transporters in Parkinson’s disease and multiple system atrophy. Mov. Disord. 16, 1023–1032 (2001).
pubmed: 11748733
Auburger, G. et al. A53T-alpha-synuclein overexpression impairs dopamine signaling and striatal synaptic plasticity in old mice. PLoS ONE 5, e11464 (2010).
pubmed: 20628651 pmcid: 2898885
Frank-Cannon, T. C., Alto, L. T., McAlpine, F. E. & Tansey, M. G. Does neuroinflammation fan the flame in neurodegenerative diseases? Mol. Neurodegener. 4, 1–13 (2009).
Sanchez-Guajardo, V., Barnum, C. J., Tansey, M. G. & Romero-Ramos, M. Neuroimmunological processes in Parkinson’s disease and their relation to α-synuclein: microglia as the referee between neuronal processes and peripheral immunity. ASN Neuro 5, 113–139 (2013).
pubmed: 23506036
Tansey, M. G. & Goldberg, M. S. Neuroinflammation in Parkinson’s disease: Its role in neuronal death and implications for therapeutic intervention. Neurobiol. Dis. 37, 510–518 (2010).
pubmed: 19913097
Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).
pubmed: 28099414 pmcid: 5404890
Richter, F. et al. A molecular tweezer ameliorates motor deficits in mice overexpressing α-synuclein. Neurotherapeutics 14, 1107–1119 (2017).
pubmed: 28585223 pmcid: 5722755
Jha, N. N. et al. Comparison of α-synuclein fibril inhibition by four different amyloid inhibitors. ACS Chem. Neurosci. 8, 2722–2733 (2017).
pubmed: 28872299
Liu, X. et al. Influence of EGCG on α-synuclein (αS) aggregation and identification of their possible binding mode: a computational study using molecular dynamics simulation. Chem. Biol. Drug Des. 91, 162–171 (2018).
pubmed: 28667699
Yang, J. E. et al. EGCG-mediated protection of the membrane disruption and cytotoxicity caused by the ‘active oligomer’ of α-synuclein. Sci. Rep. 7, 1–10 (2017).
Reznichenko, L., Kalfon, L., Amit, T., Youdim, M. B. H. & Mandel, S. A. Low dosage of rasagiline and epigallocatechin gallate synergistically restored the nigrostriatal axis in MPTP-induced parkinsonism. Neurodegener. Dis. 7, 219–231 (2010).
pubmed: 20197647
Zhou, T., Zhu, M. & Liang, Z. (-)-Epigallocatechin-3-gallate modulates peripheral immunity in the MPTP-induced mouse model of Parkinson’s disease. Mol. Med. Rep. 17, 4883–4888 (2018).
pubmed: 29363729 pmcid: 5865947
Herrera-Vaquero, M. et al. The molecular tweezer CLR01 reduces aggregated, pathologic, and seeding-competent α-synuclein in experimental multiple system atrophy. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 165513 (2019).
pubmed: 31319154
Bourdenx, M. et al. Lack of additive role of ageing in nigrostriatal neurodegeneration triggered by α-synuclein overexpression. Acta Neuropathol. Commun. 3, 1–15 (2015).
Zambon, F. et al. Cellular α-synuclein pathology is associated with bioenergetic dysfunction in Parkinson’s iPSC-derived dopamine neurons. Hum. Mol. Genet. 28, 2001–2013 (2019).
pubmed: 30753527 pmcid: 6548224
Iwatsubo, T., Saido, T. C., Mann, D. M., Lee, V. M. & Trojanowski, J. Q. Full-length amyloid-beta (1-42(43)) and amino-terminally modified and truncated amyloid-beta 42(43) deposit in diffuse plaques. Am. J. Pathol 149, 1823–1830 (1996).
pubmed: 8952519 pmcid: 1865366
Rousseau, E. et al. Targeting expression of expanded polyglutamine proteins to the endoplasmic reticulum or mitochondria prevents their aggregation. Proc. Natl Acad. Sci. USA 101, 9648–9653 (2004).
pubmed: 15210964
Alberdi, E. et al. Amyloid β oligomers induce Ca2+dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium 47, 264–272 (2010).
pubmed: 20061018
McCarthy, K. & Vellis, J. de. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 85, 890–902 (1980).

Auteurs

Nora Bengoa-Vergniory (N)

Oxford Parkinson's Disease Center (OPDC) and Department of Physiology, Anatomy and Genetics, Oxford University, South Parks Road, Oxford, OX1 3QX, UK.

Emilie Faggiani (E)

Institut des Maladies Neurodégénératives, UMR 5293, Univ. de Bordeaux, F-33000, Bordeaux, France.
CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000, Bordeaux, France.

Paula Ramos-Gonzalez (P)

Departamento de Neurociencias, Achucarro Basque Center for Neuroscience, and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Universidad del País Vasco (UPV/EHU), S-48940, Leioa, Spain.

Ecem Kirkiz (E)

Oxford Parkinson's Disease Center (OPDC) and Department of Physiology, Anatomy and Genetics, Oxford University, South Parks Road, Oxford, OX1 3QX, UK.

Natalie Connor-Robson (N)

Oxford Parkinson's Disease Center (OPDC) and Department of Physiology, Anatomy and Genetics, Oxford University, South Parks Road, Oxford, OX1 3QX, UK.

Liam V Brown (LV)

Mathematical Institute, Oxford University, Oxford, OX2 6GG, UK.

Ibrar Siddique (I)

Department of Neurology, Brain Research Institute and Molecular Biology Institute, University of California, Los Angeles, 635 Charles E Young Drive South, Gordon 451, Los Angeles, CA, 90095, USA.

Zizheng Li (Z)

Department of Neurology, Brain Research Institute and Molecular Biology Institute, University of California, Los Angeles, 635 Charles E Young Drive South, Gordon 451, Los Angeles, CA, 90095, USA.

Siv Vingill (S)

Oxford Parkinson's Disease Center (OPDC) and Department of Physiology, Anatomy and Genetics, Oxford University, South Parks Road, Oxford, OX1 3QX, UK.

Milena Cioroch (M)

Oxford Parkinson's Disease Center (OPDC) and Department of Physiology, Anatomy and Genetics, Oxford University, South Parks Road, Oxford, OX1 3QX, UK.

Fabio Cavaliere (F)

Departamento de Neurociencias, Achucarro Basque Center for Neuroscience, and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Universidad del País Vasco (UPV/EHU), S-48940, Leioa, Spain.

Sarah Threlfell (S)

Oxford Parkinson's Disease Center (OPDC) and Department of Physiology, Anatomy and Genetics, Oxford University, South Parks Road, Oxford, OX1 3QX, UK.

Bradley Roberts (B)

Oxford Parkinson's Disease Center (OPDC) and Department of Physiology, Anatomy and Genetics, Oxford University, South Parks Road, Oxford, OX1 3QX, UK.

Thomas Schrader (T)

Institute of Organic Chemistry, University of Duisburg-Essen, Essen, 45117, Germany.

Frank-Gerrit Klärner (FG)

Institute of Organic Chemistry, University of Duisburg-Essen, Essen, 45117, Germany.

Stephanie Cragg (S)

Oxford Parkinson's Disease Center (OPDC) and Department of Physiology, Anatomy and Genetics, Oxford University, South Parks Road, Oxford, OX1 3QX, UK.

Benjamin Dehay (B)

Institut des Maladies Neurodégénératives, UMR 5293, Univ. de Bordeaux, F-33000, Bordeaux, France.
CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000, Bordeaux, France.

Gal Bitan (G)

Department of Neurology, Brain Research Institute and Molecular Biology Institute, University of California, Los Angeles, 635 Charles E Young Drive South, Gordon 451, Los Angeles, CA, 90095, USA.

Carlos Matute (C)

Departamento de Neurociencias, Achucarro Basque Center for Neuroscience, and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Universidad del País Vasco (UPV/EHU), S-48940, Leioa, Spain.

Erwan Bezard (E)

Institut des Maladies Neurodégénératives, UMR 5293, Univ. de Bordeaux, F-33000, Bordeaux, France.
CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000, Bordeaux, France.

Richard Wade-Martins (R)

Oxford Parkinson's Disease Center (OPDC) and Department of Physiology, Anatomy and Genetics, Oxford University, South Parks Road, Oxford, OX1 3QX, UK. richard.wade-martins@dpag.ox.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH