Global hyperactivation of enhancers stabilizes human and mouse naive pluripotency through inhibition of CDK8/19 Mediator kinases.


Journal

Nature cell biology
ISSN: 1476-4679
Titre abrégé: Nat Cell Biol
Pays: England
ID NLM: 100890575

Informations de publication

Date de publication:
10 2020
Historique:
received: 02 05 2019
accepted: 07 08 2020
pubmed: 30 9 2020
medline: 15 12 2020
entrez: 29 9 2020
Statut: ppublish

Résumé

Pluripotent stem cells (PSCs) transition between cell states in vitro, reflecting developmental changes in the early embryo. PSCs can be stabilized in the naive state by blocking extracellular differentiation stimuli, particularly FGF-MEK signalling. Here, we report that multiple features of the naive state in human and mouse PSCs can be recapitulated without affecting FGF-MEK signalling or global DNA methylation. Mechanistically, chemical inhibition of CDK8 and CDK19 (hereafter CDK8/19) kinases removes their ability to repress the Mediator complex at enhancers. CDK8/19 inhibition therefore increases Mediator-driven recruitment of RNA polymerase II (RNA Pol II) to promoters and enhancers. This efficiently stabilizes the naive transcriptional program and confers resistance to enhancer perturbation by BRD4 inhibition. Moreover, naive pluripotency during embryonic development coincides with a reduction in CDK8/19. We conclude that global hyperactivation of enhancers drives naive pluripotency, and this can be achieved in vitro by inhibiting CDK8/19 kinase activity. These principles may apply to other contexts of cellular plasticity.

Identifiants

pubmed: 32989249
doi: 10.1038/s41556-020-0573-1
pii: 10.1038/s41556-020-0573-1
doi:

Substances chimiques

CDK19 protein, human EC 2.7.11.22
CDK19 protein, mouse EC 2.7.11.22
Cyclin-Dependent Kinase 8 EC 2.7.11.22
Cyclin-Dependent Kinases EC 2.7.11.22
RNA Polymerase II EC 2.7.7.-

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1223-1238

Subventions

Organisme : Wellcome Trust
ID : 098287/Z/12/Z
Pays : United Kingdom

Références

Heinz, S., Romanoski, C. E., Benner, C. & Glass, C. K. The selection and function of cell type-specific enhancers. Nat. Rev. Mol. Cell Biol. 16, 144–154 (2015).
pubmed: 25650801 pmcid: 4517609 doi: 10.1038/nrm3949
Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).
pubmed: 24119843 doi: 10.1016/j.cell.2013.09.053
Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).
pubmed: 23582322 pmcid: 3653129 doi: 10.1016/j.cell.2013.03.035
Allen, B. L. & Taatjes, D. J. The Mediator complex: a central integrator of transcription. Nat. Rev. Mol. Cell Biol. 16, 155–166 (2015).
pubmed: 25693131 pmcid: 4963239 doi: 10.1038/nrm3951
Jeronimo, C. & Robert, F. The Mediator complex: at the nexus of RNA Polymerase II transcription. Trends Cell Biol. 27, 765–783 (2017).
pubmed: 28778422 doi: 10.1016/j.tcb.2017.07.001
Soutourina, J. Transcription regulation by the Mediator complex. Nat. Rev. Mol. Cell Biol. 4, 262–274 (2017).
Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K. & Sharp, P. A. A phase separation model for transcriptional control. Cell 169, 13–23 (2017).
pubmed: 28340338 pmcid: 5432200 doi: 10.1016/j.cell.2017.02.007
Fant, C. B. & Taatjes, D. J. Regulatory functions of the Mediator kinases CDK8 and CDK19. Transcription 2, 76–90 (2019).
doi: 10.1080/21541264.2018.1556915
Chen, H. et al. A pan-cancer analysis of enhancer expression in nearly 9000 patient samples. Cell 173, 386–399 (2018).
pubmed: 29625054 pmcid: 5890960 doi: 10.1016/j.cell.2018.03.027
Clark, A. D., Oldenbroek, M. & Boyer, T. G. Mediator kinase module and human tumorigenesis. Crit. Rev. Biochem. Mol. Biol. 50, 393–426 (2015).
pubmed: 26182352 pmcid: 4928375
Poss, Z. C. et al. Identification of mediator kinase substrates in human cells using cortistatin a and quantitative phosphoproteomics. Cell Rep. 15, 436–450 (2016).
pubmed: 27050516 pmcid: 4833653 doi: 10.1016/j.celrep.2016.03.030
Knuesel, M. T., Meyer, K. D., Bernecky, C. & Taatjes, D. J. The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function. Genes Dev. 23, 439–451 (2009).
pubmed: 19240132 pmcid: 2648653 doi: 10.1101/gad.1767009
van de Peppel, J. et al. Mediator expression profiling epistasis reveals a signal transduction pathway with antagonistic submodules and highly specific downstream targets. Mol. Cell 19, 511–522 (2005).
pubmed: 16109375 doi: 10.1016/j.molcel.2005.06.033
Pelish, H. E. et al. Mediator kinase inhibition further activates super-enhancer-associated genes in AML. Nature 526, 273–276 (2015).
pubmed: 26416749 pmcid: 4641525 doi: 10.1038/nature14904
Gonzalez, D. et al. Suppression of Mediator is regulated by Cdk8-dependent Grr1 turnover of the Med3 coactivator. Proc. Natl Acad. Sci. USA 111, 2500–2505 (2014).
pubmed: 24550274 pmcid: 3932902 doi: 10.1073/pnas.1307525111
Bancerek, J. et al. CDK8 kinase phosphorylates transcription factor STAT1 to selectively regulate the interferon response. Immunity 38, 250–262 (2013).
pubmed: 23352233 pmcid: 3580287 doi: 10.1016/j.immuni.2012.10.017
Galbraith, M. D., Donner, A. J. & Espinosa, J. M. CDK8: a positive regulator of transcription. Transcription 1, 4–12 (2010).
pubmed: 21327159 pmcid: 3035184 doi: 10.4161/trns.1.1.12373
Hackett, J. A. & Surani, M. A. Regulatory principles of pluripotency: from the ground state up. Cell Stem Cell 15, 416–430 (2014).
pubmed: 25280218 doi: 10.1016/j.stem.2014.09.015
Nichols, J. & Smith, A. Naive and primed pluripotent states. Cell Stem Cell 4, 487–492 (2009).
pubmed: 19497275 doi: 10.1016/j.stem.2009.05.015
Galonska, C., Ziller, M. J., Karnik, R. & Meissner, A. Ground state conditions induce rapid reorganization of core pluripotency factor binding before global epigenetic reprogramming. Cell Stem Cell 17, 462–470 (2015).
pubmed: 26235340 pmcid: 4592414 doi: 10.1016/j.stem.2015.07.005
Weinberger, L., Ayyash, M., Novershtern, N. & Hanna, J. H. Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat. Rev. Mol. Cell Biol. 17, 155–169 (2016).
pubmed: 26860365 doi: 10.1038/nrm.2015.28
Wu, J. & Izpisua Belmonte, J. C. Dynamic pluripotent stem cell states and their applications. Cell Stem Cell 17, 509–525 (2015).
pubmed: 26544113 doi: 10.1016/j.stem.2015.10.009
Marks, H. et al. The transcriptional and epigenomic foundations of ground state pluripotency. Cell 149, 590–604 (2012).
pubmed: 22541430 pmcid: 3398752 doi: 10.1016/j.cell.2012.03.026
Liu, X. et al. Comprehensive characterization of distinct states of human naive pluripotency generated by reprogramming. Nat. Methods 11, 1055–1062 (2017).
doi: 10.1038/nmeth.4436
Ying, Q.-L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008).
pubmed: 18497825 pmcid: 5328678 doi: 10.1038/nature06968
Bhagwat, A. S. et al. BET bromodomain inhibition releases the Mediator complex from select cis-regulatory elements. Cell Rep. 15, 519–530 (2016).
pubmed: 27068464 pmcid: 4838499 doi: 10.1016/j.celrep.2016.03.054
Di Micco, R. et al. Control of embryonic stem cell identity by BRD4-dependent transcriptional elongation of super-enhancer-associated pluripotency genes. Cell Rep. 9, 234–247 (2014).
pubmed: 25263550 pmcid: 4317728 doi: 10.1016/j.celrep.2014.08.055
Finley, L. W. S. et al. Pluripotency transcription factors and Tet1/2 maintain Brd4-independent stem cell identity. Nat. Cell Biol. 5, 565–574 (2018).
doi: 10.1038/s41556-018-0086-3
Chambers, I. et al. Nanog safeguards pluripotency and mediates germline development. Nature 450, 1230–1234 (2007).
pubmed: 18097409 doi: 10.1038/nature06403
Ficz, G. et al. FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency. Cell Stem Cell 13, 351–359 (2013).
pubmed: 23850245 pmcid: 3765959 doi: 10.1016/j.stem.2013.06.004
Dale, T. et al. A selective chemical probe for exploring the role of CDK8 and CDK19 in human disease. Nat. Chem. Biol. 11, 973–980 (2015).
pubmed: 26502155 pmcid: 4677459 doi: 10.1038/nchembio.1952
Takashima, Y. et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158, 1254–1269 (2014).
pubmed: 25215486 pmcid: 4162745 doi: 10.1016/j.cell.2014.08.029
Gafni, O. et al. Derivation of novel human ground state naive pluripotent stem cells. Nature 504, 282–286 (2013).
pubmed: 24172903 doi: 10.1038/nature12745
Theunissen, T. W. et al. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15, 471–487 (2014).
pubmed: 25090446 pmcid: 4184977 doi: 10.1016/j.stem.2014.07.002
Shahbazi, M. N. et al. Pluripotent state transitions coordinate morphogenesis in mouse and human embryos. Nature 552, 239–243 (2017).
pubmed: 29186120 pmcid: 5768241 doi: 10.1038/nature24675
Chen, H. et al. Reinforcement of STAT3 activity reprogrammes human embryonic stem cells to naive-like pluripotency. Nat. Commun. 6, 7095 (2015).
pubmed: 25968054 doi: 10.1038/ncomms8095
Wang, J. et al. Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells. Nature 516, 405–409 (2014).
pubmed: 25317556 doi: 10.1038/nature13804
Stirparo, G. G. et al. Integrated analysis of single-cell embryo data yields a unified transcriptome signature for the human pre-implantation epiblast. Development 145, dev158501 (2018).
pubmed: 29361568 pmcid: 5818005 doi: 10.1242/dev.158501
Pastor, W. A. et al. Naive human pluripotent cells feature a methylation landscape devoid of blastocyst or germline memory. Cell Stem Cell 18, 323–329 (2016).
pubmed: 26853856 pmcid: 4779431 doi: 10.1016/j.stem.2016.01.019
Wu, J. et al. Interspecies chimerism with mammalian pluripotent stem cells. Cell 168, 473–486 (2017).
pubmed: 28129541 pmcid: 5679265 doi: 10.1016/j.cell.2016.12.036
Wu, J. et al. Stem cells and interspecies chimaeras. Nature 540, 51–59 (2016).
pubmed: 27905428 doi: 10.1038/nature20573
Gifford, W. D., Pfaff, S. L. & MacFarlan, T. S. Transposable elements as genetic regulatory substrates in early development. Trends Cell Biol. 23, 218–226 (2013).
pubmed: 23411159 pmcid: 4034679 doi: 10.1016/j.tcb.2013.01.001
Göke, J. et al. Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early human embryonic cells. Cell Stem Cell 16, 135–141 (2015).
pubmed: 25658370 doi: 10.1016/j.stem.2015.01.005
Grow, E. J. et al. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature 522, 221–225 (2015).
pubmed: 25896322 pmcid: 4503379 doi: 10.1038/nature14308
Theunissen, T. W. et al. Molecular criteria for defining the naive human pluripotent state. Cell Stem Cell 19, 502–515 (2016).
pubmed: 27424783 pmcid: 5065525 doi: 10.1016/j.stem.2016.06.011
Macfarlan, T. S. et al. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487, 57–63 (2012).
pubmed: 22722858 pmcid: 3395470 doi: 10.1038/nature11244
Eckersley-Maslin, M. A. et al. MERVL/Zscan4 network activation results in transient genome-wide DNA demethylation of mESCs. Cell Rep. 17, 179–192 (2016).
pubmed: 27681430 pmcid: 5055476 doi: 10.1016/j.celrep.2016.08.087
Kolodziejczyk, A. A. et al. Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation. Cell Stem Cell 17, 471–485 (2015).
pubmed: 26431182 pmcid: 4595712 doi: 10.1016/j.stem.2015.09.011
Fidalgo, M. et al. Zfp281 coordinates opposing functions of Tet1 and Tet2 in pluripotent states. Cell Stem Cell 19, 355–369 (2016).
pubmed: 27345836 pmcid: 5010473 doi: 10.1016/j.stem.2016.05.025
Buecker, C. et al. Reorganization of enhancer patterns in transition from naive to primed pluripotency. Cell Stem Cell 14, 838–853 (2014).
pubmed: 24905168 pmcid: 4491504 doi: 10.1016/j.stem.2014.04.003
Bulut-Karslioglu, A. et al. Inhibition of mTOR induces a paused pluripotent state. Nature 540, 119–123 (2016).
pubmed: 27880763 pmcid: 5143278 doi: 10.1038/nature20578
Boroviak, T. et al. Lineage-specific profiling delineates the emergence and progression of naive pluripotency in mammalian embryogenesis. Dev. Cell 35, 366–382 (2015).
pubmed: 26555056 pmcid: 4643313 doi: 10.1016/j.devcel.2015.10.011
Blakeley, P. et al. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development 142, 3613–3613 (2015).
pubmed: 26487783 pmcid: 4631772 doi: 10.1242/dev.131235
Nakamura, T. et al. A developmental coordinate of pluripotency among mice, monkeys and humans. Nature 537, 57–62 (2016).
pubmed: 27556940 doi: 10.1038/nature19096
Yan, L. et al. Single-cell RNA-seq profiling of human preimplantation embryos and embryonic stem cells. Nat. Struct. Mol. Biol. 20, 1131–1139 (2013).
pubmed: 23934149 doi: 10.1038/nsmb.2660
Xue, Z. et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500, 593–597 (2013).
pubmed: 23892778 pmcid: 4950944 doi: 10.1038/nature12364
Petropoulos, S. et al. Single-cell RNA-seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 165, 1012–1026 (2016).
pubmed: 27062923 pmcid: 4868821 doi: 10.1016/j.cell.2016.03.023
Guo, G. et al. Naive pluripotent stem cells derived directly from isolated cells of the human inner cell mass. Stem Cell Rep. 6, 437–446 (2016).
doi: 10.1016/j.stemcr.2016.02.005
Chan, Y. S. et al. Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast. Cell Stem Cell 13, 663–675 (2013).
pubmed: 24315441 doi: 10.1016/j.stem.2013.11.015
Sahakyan, A. et al. Human naive pluripotent stem cells model X chromosome dampening and X inactivation. Cell Stem Cell 20, 87–101 (2017).
pubmed: 27989770 doi: 10.1016/j.stem.2016.10.006
von Meyenn, F. et al. Impairment of DNA Methylation maintenance is the main cause of global demethylation in naive embryonic stem cells. Mol. Cell 62, 848–861 (2016).
doi: 10.1016/j.molcel.2016.04.025
Yagi, M. et al. Derivation of ground-state female ES cells maintaining gamete-derived DNA methylation. Nature 548, 224–227 (2017).
pubmed: 28746308 doi: 10.1038/nature23286
Choi, J. et al. Prolonged Mek1/2 suppression impairs the developmental potential of embryonic stem cells. Nature 548, 219–223 (2017).
pubmed: 28746311 pmcid: 5905676 doi: 10.1038/nature23274
Di Stefano, B. et al. Reduced MEK inhibition preserves genomic stability in naive human embryonic stem cells. Nat. Methods 15, 732–740 (2018).
pubmed: 30127506 pmcid: 6127858 doi: 10.1038/s41592-018-0104-1
Leitch, H. G. et al. Naive pluripotency is associated with global DNA hypomethylation. Nat. Struct. Mol. Biol. 20, 311–316 (2013).
pubmed: 23416945 pmcid: 3591483 doi: 10.1038/nsmb.2510
Sahakyan, A. et al. Human naive pluripotent stem cells model X chromosome dampening and X inactivation human naive pluripotent stem cells model. Stem Cell 87–101 (2017).
Khan, S. A., Audergon, P. N. C. B. & Payer, B. X-chromosome activity in naive human pluripotent stem cells—are we there yet? Stem Cell Investig. 4, 54–54 (2017).
pubmed: 28725650 pmcid: 5503910 doi: 10.21037/sci.2017.06.03
Rahl, P. B. et al. c-Myc regulates transcriptional pause release. Cell 141, 432–445 (2010).
pubmed: 20434984 pmcid: 2864022 doi: 10.1016/j.cell.2010.03.030
Williams, L. H. et al. Pausing of RNA polymerase II regulates mammalian developmental potential through control of signaling networks. Mol. Cell 58, 311–322 (2015).
pubmed: 25773599 pmcid: 4402150 doi: 10.1016/j.molcel.2015.02.003
Arner, E. et al. Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science 347, 1010–1014 (2015).
pubmed: 25678556 pmcid: 4681433 doi: 10.1126/science.1259418
Respuela, P. et al. Foxd3 Promotes exit from naive pluripotency through enhancer decommissioning and inhibits germline specification. Cell Stem Cell 18, 118–133 (2016).
pubmed: 26748758 pmcid: 5048917 doi: 10.1016/j.stem.2015.09.010
Westerling, T., Kuuluvainen, E. & Makela, T. P. Cdk8 is essential for preimplantation mouse development. Mol. Cell. Biol. 27, 6177–6182 (2007).
pubmed: 17620419 pmcid: 1952144 doi: 10.1128/MCB.01302-06
Yamanaka, Y., Lanner, F. & Rossant, J. FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development 137, 715–724 (2010).
pubmed: 20147376 doi: 10.1242/dev.043471
Nichols, J., Silva, J., Roode, M. & Smith, A. Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development 136, 3215–3222 (2009).
pubmed: 19710168 pmcid: 2739140 doi: 10.1242/dev.038893
Lopes Novo, C. et al. Long-range enhancer interactions are prevalent in mouse embryonic stem cells and are reorganized upon pluripotent state transition. Cell Rep. 22, 2615–2627 (2018).
doi: 10.1016/j.celrep.2018.02.040
Di Stefano, B. et al. The RNA helicase DDX6 controls cellular plasticity by modulating P-body homeostasis. Cell Stem Cell 25, 622–638 (2019).
pubmed: 31588046 pmcid: 7247364 doi: 10.1016/j.stem.2019.08.018
Factor, D. C. et al. Epigenomic comparison reveals activation of ‘seed’ enhancers during transition from naive to primed pluripotency. Cell Stem Cell 14, 854–863 (2014).
pubmed: 24905169 pmcid: 4149284 doi: 10.1016/j.stem.2014.05.005
Postlmayr, A., Dumeau, C. E. & Wutz, A. Cdk8 is required for establishment of H3K27me3 and gene repression by Xist and mouse development. Development 147, dev175141 (2020).
Feldmann, A., Dimitrova, E., Kenney, A., Lastuvkova, A. & Klose, R. J. CDK-Mediator and FBXL19 prime developmental genes for activation by promoting atypical regulatory interactions. Nucleic Acids Res. 48, 2942–2955 (2020).
pubmed: 31996894 pmcid: 7102981 doi: 10.1093/nar/gkaa064
Bradner, J. E., Hnisz, D. & Young, R. A. Transcriptional addiction in cancer. Cell 168, 629–643 (2017).
pubmed: 28187285 pmcid: 5308559 doi: 10.1016/j.cell.2016.12.013
Diéguez-Hurtado, R. et al. A Cre-reporter transgenic mouse expressing the far-red fluorescent protein Katushka. Genesis 49, 36–45 (2011).
pubmed: 21254335 doi: 10.1002/dvg.20685
Zalzman, M. et al. Zscan4 regulates telomere elongation and genomic stability in ES cells. Nature 464, 858–863 (2010).
pubmed: 20336070 pmcid: 2851843 doi: 10.1038/nature08882
Porter, D. C. et al. Cyclin-dependent kinase 8 mediates chemotherapy-induced tumor-promoting paracrine activities. Proc. Natl Acad. Sci. USA 109, 13799–13804 (2012).
pubmed: 22869755 pmcid: 3427077 doi: 10.1073/pnas.1206906109
Lynch, C. J. et al. The RNA polymerase II factor RPAP1 is critical for mediator-driven transcription and cell identity. Cell Rep. 22, 396–410 (2018).
pubmed: 29320736 pmcid: 5775503 doi: 10.1016/j.celrep.2017.12.062
Plaisier, S. B., Taschereau, R., Wong, J. A. & Graeber, T. G. Rank–rank hypergeometric overlap: identification of statistically significant overlap between gene-expression signatures. Nucleic Acids Res. 38, e169 (2010).
pubmed: 20660011 pmcid: 2943622 doi: 10.1093/nar/gkq636
Castro-Diaz, N. et al. Evolutionally dynamic L1 regulation in embryonic stem cells. Genes Dev. 28, 1397–1409 (2014).
pubmed: 24939876 pmcid: 4083085 doi: 10.1101/gad.241661.114
Papadopoulou, T., Kaymak, A., Sayols, S. & Richly, H. Dual role of Med12 in PRC1-dependent gene repression and ncRNA-mediated transcriptional activation. Cell Cycle 15, 1479–1493 (2016).
pubmed: 27096886 pmcid: 4934080 doi: 10.1080/15384101.2016.1175797
Xiang, L. et al. A developmental landscape of 3D-cultured human pre-gastrulation embryos. Nature 577, 537–542 (2020).
pubmed: 31830756 doi: 10.1038/s41586-019-1875-y
Broude, E. V. et al. Expression of CDK8 and CDK8-interacting genes as potential biomarkers in breast cancer. Curr. Cancer Drug Targets 15, 739–749 (2015).
pubmed: 26452386 pmcid: 4755306 doi: 10.2174/156800961508151001105814
McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).
pubmed: 20436461 pmcid: 4840234 doi: 10.1038/nbt.1630

Auteurs

Cian J Lynch (CJ)

Tumour Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.

Raquel Bernad (R)

Tumour Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.

Ana Martínez-Val (A)

ProteoRed-ISCIII Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.

Marta N Shahbazi (MN)

Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
MRC Laboratory of Molecular Biology, Biomedical Campus, Cambridge, UK.

Sandrina Nóbrega-Pereira (S)

Department of Medical Sciences and Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal.

Isabel Calvo (I)

Tumour Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.

Carmen Blanco-Aparicio (C)

Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.

Carolina Tarantino (C)

Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.

Elena Garreta (E)

Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.

Laia Richart-Ginés (L)

Maintenance of Transcriptional Repression by Polycomb Proteins, Institut Curie, Paris, France.

Noelia Alcazar (N)

Tumour Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.

Osvaldo Graña-Castro (O)

Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.

Gonzalo Gómez-Lopez (G)

Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.

Irene Aksoy (I)

Stem Cell and Brain Research Institute, Univ Lyon, Université Lyon 1, INSERM U1208, Bron, France.

Maribel Muñoz-Martín (M)

Tumour Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.

Sonia Martinez (S)

Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.

Sagrario Ortega (S)

Transgenic Mice Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.

Susana Prieto (S)

IGMM, University of Montpellier, CNRS, Inserm, Montpellier, France.

Elisabeth Simboeck (E)

IGMM, University of Montpellier, CNRS, Inserm, Montpellier, France.

Alain Camasses (A)

IGMM, University of Montpellier, CNRS, Inserm, Montpellier, France.

Camille Stephan-Otto Attolini (C)

Bioinformatics-Biostatistics Unit, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.

Agustin F Fernandez (AF)

Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Institute of Oncology of Asturias (IUOPA), ISPA-Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Oviedo, Spain.

Marta I Sierra (MI)

Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Institute of Oncology of Asturias (IUOPA), ISPA-Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Oviedo, Spain.

Mario F Fraga (MF)

Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Institute of Oncology of Asturias (IUOPA), ISPA-Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Oviedo, Spain.

Joaquin Pastor (J)

Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.

Daniel Fisher (D)

IGMM, University of Montpellier, CNRS, Inserm, Montpellier, France.

Nuria Montserrat (N)

Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Spain.
Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.

Pierre Savatier (P)

Stem Cell and Brain Research Institute, Univ Lyon, Université Lyon 1, INSERM U1208, Bron, France.

Javier Muñoz (J)

ProteoRed-ISCIII Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.

Magdalena Zernicka-Goetz (M)

Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
Division of Biology and Biological Engineering, Caltech, Pasadena, CA, USA.

Manuel Serrano (M)

Tumour Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. manuel.serrano@irbbarcelona.org.
Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain. manuel.serrano@irbbarcelona.org.
Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain. manuel.serrano@irbbarcelona.org.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH