Global hyperactivation of enhancers stabilizes human and mouse naive pluripotency through inhibition of CDK8/19 Mediator kinases.
Animals
Cell Differentiation
Cyclin-Dependent Kinase 8
/ antagonists & inhibitors
Cyclin-Dependent Kinases
/ antagonists & inhibitors
DNA Methylation
Enhancer Elements, Genetic
Female
Humans
Mice
Phosphorylation
Pluripotent Stem Cells
/ cytology
Promoter Regions, Genetic
RNA Polymerase II
/ genetics
Signal Transduction
Journal
Nature cell biology
ISSN: 1476-4679
Titre abrégé: Nat Cell Biol
Pays: England
ID NLM: 100890575
Informations de publication
Date de publication:
10 2020
10 2020
Historique:
received:
02
05
2019
accepted:
07
08
2020
pubmed:
30
9
2020
medline:
15
12
2020
entrez:
29
9
2020
Statut:
ppublish
Résumé
Pluripotent stem cells (PSCs) transition between cell states in vitro, reflecting developmental changes in the early embryo. PSCs can be stabilized in the naive state by blocking extracellular differentiation stimuli, particularly FGF-MEK signalling. Here, we report that multiple features of the naive state in human and mouse PSCs can be recapitulated without affecting FGF-MEK signalling or global DNA methylation. Mechanistically, chemical inhibition of CDK8 and CDK19 (hereafter CDK8/19) kinases removes their ability to repress the Mediator complex at enhancers. CDK8/19 inhibition therefore increases Mediator-driven recruitment of RNA polymerase II (RNA Pol II) to promoters and enhancers. This efficiently stabilizes the naive transcriptional program and confers resistance to enhancer perturbation by BRD4 inhibition. Moreover, naive pluripotency during embryonic development coincides with a reduction in CDK8/19. We conclude that global hyperactivation of enhancers drives naive pluripotency, and this can be achieved in vitro by inhibiting CDK8/19 kinase activity. These principles may apply to other contexts of cellular plasticity.
Identifiants
pubmed: 32989249
doi: 10.1038/s41556-020-0573-1
pii: 10.1038/s41556-020-0573-1
doi:
Substances chimiques
CDK19 protein, human
EC 2.7.11.22
CDK19 protein, mouse
EC 2.7.11.22
Cyclin-Dependent Kinase 8
EC 2.7.11.22
Cyclin-Dependent Kinases
EC 2.7.11.22
RNA Polymerase II
EC 2.7.7.-
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1223-1238Subventions
Organisme : Wellcome Trust
ID : 098287/Z/12/Z
Pays : United Kingdom
Références
Heinz, S., Romanoski, C. E., Benner, C. & Glass, C. K. The selection and function of cell type-specific enhancers. Nat. Rev. Mol. Cell Biol. 16, 144–154 (2015).
pubmed: 25650801
pmcid: 4517609
doi: 10.1038/nrm3949
Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).
pubmed: 24119843
doi: 10.1016/j.cell.2013.09.053
Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).
pubmed: 23582322
pmcid: 3653129
doi: 10.1016/j.cell.2013.03.035
Allen, B. L. & Taatjes, D. J. The Mediator complex: a central integrator of transcription. Nat. Rev. Mol. Cell Biol. 16, 155–166 (2015).
pubmed: 25693131
pmcid: 4963239
doi: 10.1038/nrm3951
Jeronimo, C. & Robert, F. The Mediator complex: at the nexus of RNA Polymerase II transcription. Trends Cell Biol. 27, 765–783 (2017).
pubmed: 28778422
doi: 10.1016/j.tcb.2017.07.001
Soutourina, J. Transcription regulation by the Mediator complex. Nat. Rev. Mol. Cell Biol. 4, 262–274 (2017).
Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K. & Sharp, P. A. A phase separation model for transcriptional control. Cell 169, 13–23 (2017).
pubmed: 28340338
pmcid: 5432200
doi: 10.1016/j.cell.2017.02.007
Fant, C. B. & Taatjes, D. J. Regulatory functions of the Mediator kinases CDK8 and CDK19. Transcription 2, 76–90 (2019).
doi: 10.1080/21541264.2018.1556915
Chen, H. et al. A pan-cancer analysis of enhancer expression in nearly 9000 patient samples. Cell 173, 386–399 (2018).
pubmed: 29625054
pmcid: 5890960
doi: 10.1016/j.cell.2018.03.027
Clark, A. D., Oldenbroek, M. & Boyer, T. G. Mediator kinase module and human tumorigenesis. Crit. Rev. Biochem. Mol. Biol. 50, 393–426 (2015).
pubmed: 26182352
pmcid: 4928375
Poss, Z. C. et al. Identification of mediator kinase substrates in human cells using cortistatin a and quantitative phosphoproteomics. Cell Rep. 15, 436–450 (2016).
pubmed: 27050516
pmcid: 4833653
doi: 10.1016/j.celrep.2016.03.030
Knuesel, M. T., Meyer, K. D., Bernecky, C. & Taatjes, D. J. The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function. Genes Dev. 23, 439–451 (2009).
pubmed: 19240132
pmcid: 2648653
doi: 10.1101/gad.1767009
van de Peppel, J. et al. Mediator expression profiling epistasis reveals a signal transduction pathway with antagonistic submodules and highly specific downstream targets. Mol. Cell 19, 511–522 (2005).
pubmed: 16109375
doi: 10.1016/j.molcel.2005.06.033
Pelish, H. E. et al. Mediator kinase inhibition further activates super-enhancer-associated genes in AML. Nature 526, 273–276 (2015).
pubmed: 26416749
pmcid: 4641525
doi: 10.1038/nature14904
Gonzalez, D. et al. Suppression of Mediator is regulated by Cdk8-dependent Grr1 turnover of the Med3 coactivator. Proc. Natl Acad. Sci. USA 111, 2500–2505 (2014).
pubmed: 24550274
pmcid: 3932902
doi: 10.1073/pnas.1307525111
Bancerek, J. et al. CDK8 kinase phosphorylates transcription factor STAT1 to selectively regulate the interferon response. Immunity 38, 250–262 (2013).
pubmed: 23352233
pmcid: 3580287
doi: 10.1016/j.immuni.2012.10.017
Galbraith, M. D., Donner, A. J. & Espinosa, J. M. CDK8: a positive regulator of transcription. Transcription 1, 4–12 (2010).
pubmed: 21327159
pmcid: 3035184
doi: 10.4161/trns.1.1.12373
Hackett, J. A. & Surani, M. A. Regulatory principles of pluripotency: from the ground state up. Cell Stem Cell 15, 416–430 (2014).
pubmed: 25280218
doi: 10.1016/j.stem.2014.09.015
Nichols, J. & Smith, A. Naive and primed pluripotent states. Cell Stem Cell 4, 487–492 (2009).
pubmed: 19497275
doi: 10.1016/j.stem.2009.05.015
Galonska, C., Ziller, M. J., Karnik, R. & Meissner, A. Ground state conditions induce rapid reorganization of core pluripotency factor binding before global epigenetic reprogramming. Cell Stem Cell 17, 462–470 (2015).
pubmed: 26235340
pmcid: 4592414
doi: 10.1016/j.stem.2015.07.005
Weinberger, L., Ayyash, M., Novershtern, N. & Hanna, J. H. Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat. Rev. Mol. Cell Biol. 17, 155–169 (2016).
pubmed: 26860365
doi: 10.1038/nrm.2015.28
Wu, J. & Izpisua Belmonte, J. C. Dynamic pluripotent stem cell states and their applications. Cell Stem Cell 17, 509–525 (2015).
pubmed: 26544113
doi: 10.1016/j.stem.2015.10.009
Marks, H. et al. The transcriptional and epigenomic foundations of ground state pluripotency. Cell 149, 590–604 (2012).
pubmed: 22541430
pmcid: 3398752
doi: 10.1016/j.cell.2012.03.026
Liu, X. et al. Comprehensive characterization of distinct states of human naive pluripotency generated by reprogramming. Nat. Methods 11, 1055–1062 (2017).
doi: 10.1038/nmeth.4436
Ying, Q.-L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008).
pubmed: 18497825
pmcid: 5328678
doi: 10.1038/nature06968
Bhagwat, A. S. et al. BET bromodomain inhibition releases the Mediator complex from select cis-regulatory elements. Cell Rep. 15, 519–530 (2016).
pubmed: 27068464
pmcid: 4838499
doi: 10.1016/j.celrep.2016.03.054
Di Micco, R. et al. Control of embryonic stem cell identity by BRD4-dependent transcriptional elongation of super-enhancer-associated pluripotency genes. Cell Rep. 9, 234–247 (2014).
pubmed: 25263550
pmcid: 4317728
doi: 10.1016/j.celrep.2014.08.055
Finley, L. W. S. et al. Pluripotency transcription factors and Tet1/2 maintain Brd4-independent stem cell identity. Nat. Cell Biol. 5, 565–574 (2018).
doi: 10.1038/s41556-018-0086-3
Chambers, I. et al. Nanog safeguards pluripotency and mediates germline development. Nature 450, 1230–1234 (2007).
pubmed: 18097409
doi: 10.1038/nature06403
Ficz, G. et al. FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency. Cell Stem Cell 13, 351–359 (2013).
pubmed: 23850245
pmcid: 3765959
doi: 10.1016/j.stem.2013.06.004
Dale, T. et al. A selective chemical probe for exploring the role of CDK8 and CDK19 in human disease. Nat. Chem. Biol. 11, 973–980 (2015).
pubmed: 26502155
pmcid: 4677459
doi: 10.1038/nchembio.1952
Takashima, Y. et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158, 1254–1269 (2014).
pubmed: 25215486
pmcid: 4162745
doi: 10.1016/j.cell.2014.08.029
Gafni, O. et al. Derivation of novel human ground state naive pluripotent stem cells. Nature 504, 282–286 (2013).
pubmed: 24172903
doi: 10.1038/nature12745
Theunissen, T. W. et al. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15, 471–487 (2014).
pubmed: 25090446
pmcid: 4184977
doi: 10.1016/j.stem.2014.07.002
Shahbazi, M. N. et al. Pluripotent state transitions coordinate morphogenesis in mouse and human embryos. Nature 552, 239–243 (2017).
pubmed: 29186120
pmcid: 5768241
doi: 10.1038/nature24675
Chen, H. et al. Reinforcement of STAT3 activity reprogrammes human embryonic stem cells to naive-like pluripotency. Nat. Commun. 6, 7095 (2015).
pubmed: 25968054
doi: 10.1038/ncomms8095
Wang, J. et al. Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells. Nature 516, 405–409 (2014).
pubmed: 25317556
doi: 10.1038/nature13804
Stirparo, G. G. et al. Integrated analysis of single-cell embryo data yields a unified transcriptome signature for the human pre-implantation epiblast. Development 145, dev158501 (2018).
pubmed: 29361568
pmcid: 5818005
doi: 10.1242/dev.158501
Pastor, W. A. et al. Naive human pluripotent cells feature a methylation landscape devoid of blastocyst or germline memory. Cell Stem Cell 18, 323–329 (2016).
pubmed: 26853856
pmcid: 4779431
doi: 10.1016/j.stem.2016.01.019
Wu, J. et al. Interspecies chimerism with mammalian pluripotent stem cells. Cell 168, 473–486 (2017).
pubmed: 28129541
pmcid: 5679265
doi: 10.1016/j.cell.2016.12.036
Wu, J. et al. Stem cells and interspecies chimaeras. Nature 540, 51–59 (2016).
pubmed: 27905428
doi: 10.1038/nature20573
Gifford, W. D., Pfaff, S. L. & MacFarlan, T. S. Transposable elements as genetic regulatory substrates in early development. Trends Cell Biol. 23, 218–226 (2013).
pubmed: 23411159
pmcid: 4034679
doi: 10.1016/j.tcb.2013.01.001
Göke, J. et al. Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early human embryonic cells. Cell Stem Cell 16, 135–141 (2015).
pubmed: 25658370
doi: 10.1016/j.stem.2015.01.005
Grow, E. J. et al. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature 522, 221–225 (2015).
pubmed: 25896322
pmcid: 4503379
doi: 10.1038/nature14308
Theunissen, T. W. et al. Molecular criteria for defining the naive human pluripotent state. Cell Stem Cell 19, 502–515 (2016).
pubmed: 27424783
pmcid: 5065525
doi: 10.1016/j.stem.2016.06.011
Macfarlan, T. S. et al. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487, 57–63 (2012).
pubmed: 22722858
pmcid: 3395470
doi: 10.1038/nature11244
Eckersley-Maslin, M. A. et al. MERVL/Zscan4 network activation results in transient genome-wide DNA demethylation of mESCs. Cell Rep. 17, 179–192 (2016).
pubmed: 27681430
pmcid: 5055476
doi: 10.1016/j.celrep.2016.08.087
Kolodziejczyk, A. A. et al. Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation. Cell Stem Cell 17, 471–485 (2015).
pubmed: 26431182
pmcid: 4595712
doi: 10.1016/j.stem.2015.09.011
Fidalgo, M. et al. Zfp281 coordinates opposing functions of Tet1 and Tet2 in pluripotent states. Cell Stem Cell 19, 355–369 (2016).
pubmed: 27345836
pmcid: 5010473
doi: 10.1016/j.stem.2016.05.025
Buecker, C. et al. Reorganization of enhancer patterns in transition from naive to primed pluripotency. Cell Stem Cell 14, 838–853 (2014).
pubmed: 24905168
pmcid: 4491504
doi: 10.1016/j.stem.2014.04.003
Bulut-Karslioglu, A. et al. Inhibition of mTOR induces a paused pluripotent state. Nature 540, 119–123 (2016).
pubmed: 27880763
pmcid: 5143278
doi: 10.1038/nature20578
Boroviak, T. et al. Lineage-specific profiling delineates the emergence and progression of naive pluripotency in mammalian embryogenesis. Dev. Cell 35, 366–382 (2015).
pubmed: 26555056
pmcid: 4643313
doi: 10.1016/j.devcel.2015.10.011
Blakeley, P. et al. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development 142, 3613–3613 (2015).
pubmed: 26487783
pmcid: 4631772
doi: 10.1242/dev.131235
Nakamura, T. et al. A developmental coordinate of pluripotency among mice, monkeys and humans. Nature 537, 57–62 (2016).
pubmed: 27556940
doi: 10.1038/nature19096
Yan, L. et al. Single-cell RNA-seq profiling of human preimplantation embryos and embryonic stem cells. Nat. Struct. Mol. Biol. 20, 1131–1139 (2013).
pubmed: 23934149
doi: 10.1038/nsmb.2660
Xue, Z. et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500, 593–597 (2013).
pubmed: 23892778
pmcid: 4950944
doi: 10.1038/nature12364
Petropoulos, S. et al. Single-cell RNA-seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 165, 1012–1026 (2016).
pubmed: 27062923
pmcid: 4868821
doi: 10.1016/j.cell.2016.03.023
Guo, G. et al. Naive pluripotent stem cells derived directly from isolated cells of the human inner cell mass. Stem Cell Rep. 6, 437–446 (2016).
doi: 10.1016/j.stemcr.2016.02.005
Chan, Y. S. et al. Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast. Cell Stem Cell 13, 663–675 (2013).
pubmed: 24315441
doi: 10.1016/j.stem.2013.11.015
Sahakyan, A. et al. Human naive pluripotent stem cells model X chromosome dampening and X inactivation. Cell Stem Cell 20, 87–101 (2017).
pubmed: 27989770
doi: 10.1016/j.stem.2016.10.006
von Meyenn, F. et al. Impairment of DNA Methylation maintenance is the main cause of global demethylation in naive embryonic stem cells. Mol. Cell 62, 848–861 (2016).
doi: 10.1016/j.molcel.2016.04.025
Yagi, M. et al. Derivation of ground-state female ES cells maintaining gamete-derived DNA methylation. Nature 548, 224–227 (2017).
pubmed: 28746308
doi: 10.1038/nature23286
Choi, J. et al. Prolonged Mek1/2 suppression impairs the developmental potential of embryonic stem cells. Nature 548, 219–223 (2017).
pubmed: 28746311
pmcid: 5905676
doi: 10.1038/nature23274
Di Stefano, B. et al. Reduced MEK inhibition preserves genomic stability in naive human embryonic stem cells. Nat. Methods 15, 732–740 (2018).
pubmed: 30127506
pmcid: 6127858
doi: 10.1038/s41592-018-0104-1
Leitch, H. G. et al. Naive pluripotency is associated with global DNA hypomethylation. Nat. Struct. Mol. Biol. 20, 311–316 (2013).
pubmed: 23416945
pmcid: 3591483
doi: 10.1038/nsmb.2510
Sahakyan, A. et al. Human naive pluripotent stem cells model X chromosome dampening and X inactivation human naive pluripotent stem cells model. Stem Cell 87–101 (2017).
Khan, S. A., Audergon, P. N. C. B. & Payer, B. X-chromosome activity in naive human pluripotent stem cells—are we there yet? Stem Cell Investig. 4, 54–54 (2017).
pubmed: 28725650
pmcid: 5503910
doi: 10.21037/sci.2017.06.03
Rahl, P. B. et al. c-Myc regulates transcriptional pause release. Cell 141, 432–445 (2010).
pubmed: 20434984
pmcid: 2864022
doi: 10.1016/j.cell.2010.03.030
Williams, L. H. et al. Pausing of RNA polymerase II regulates mammalian developmental potential through control of signaling networks. Mol. Cell 58, 311–322 (2015).
pubmed: 25773599
pmcid: 4402150
doi: 10.1016/j.molcel.2015.02.003
Arner, E. et al. Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science 347, 1010–1014 (2015).
pubmed: 25678556
pmcid: 4681433
doi: 10.1126/science.1259418
Respuela, P. et al. Foxd3 Promotes exit from naive pluripotency through enhancer decommissioning and inhibits germline specification. Cell Stem Cell 18, 118–133 (2016).
pubmed: 26748758
pmcid: 5048917
doi: 10.1016/j.stem.2015.09.010
Westerling, T., Kuuluvainen, E. & Makela, T. P. Cdk8 is essential for preimplantation mouse development. Mol. Cell. Biol. 27, 6177–6182 (2007).
pubmed: 17620419
pmcid: 1952144
doi: 10.1128/MCB.01302-06
Yamanaka, Y., Lanner, F. & Rossant, J. FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development 137, 715–724 (2010).
pubmed: 20147376
doi: 10.1242/dev.043471
Nichols, J., Silva, J., Roode, M. & Smith, A. Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development 136, 3215–3222 (2009).
pubmed: 19710168
pmcid: 2739140
doi: 10.1242/dev.038893
Lopes Novo, C. et al. Long-range enhancer interactions are prevalent in mouse embryonic stem cells and are reorganized upon pluripotent state transition. Cell Rep. 22, 2615–2627 (2018).
doi: 10.1016/j.celrep.2018.02.040
Di Stefano, B. et al. The RNA helicase DDX6 controls cellular plasticity by modulating P-body homeostasis. Cell Stem Cell 25, 622–638 (2019).
pubmed: 31588046
pmcid: 7247364
doi: 10.1016/j.stem.2019.08.018
Factor, D. C. et al. Epigenomic comparison reveals activation of ‘seed’ enhancers during transition from naive to primed pluripotency. Cell Stem Cell 14, 854–863 (2014).
pubmed: 24905169
pmcid: 4149284
doi: 10.1016/j.stem.2014.05.005
Postlmayr, A., Dumeau, C. E. & Wutz, A. Cdk8 is required for establishment of H3K27me3 and gene repression by Xist and mouse development. Development 147, dev175141 (2020).
Feldmann, A., Dimitrova, E., Kenney, A., Lastuvkova, A. & Klose, R. J. CDK-Mediator and FBXL19 prime developmental genes for activation by promoting atypical regulatory interactions. Nucleic Acids Res. 48, 2942–2955 (2020).
pubmed: 31996894
pmcid: 7102981
doi: 10.1093/nar/gkaa064
Bradner, J. E., Hnisz, D. & Young, R. A. Transcriptional addiction in cancer. Cell 168, 629–643 (2017).
pubmed: 28187285
pmcid: 5308559
doi: 10.1016/j.cell.2016.12.013
Diéguez-Hurtado, R. et al. A Cre-reporter transgenic mouse expressing the far-red fluorescent protein Katushka. Genesis 49, 36–45 (2011).
pubmed: 21254335
doi: 10.1002/dvg.20685
Zalzman, M. et al. Zscan4 regulates telomere elongation and genomic stability in ES cells. Nature 464, 858–863 (2010).
pubmed: 20336070
pmcid: 2851843
doi: 10.1038/nature08882
Porter, D. C. et al. Cyclin-dependent kinase 8 mediates chemotherapy-induced tumor-promoting paracrine activities. Proc. Natl Acad. Sci. USA 109, 13799–13804 (2012).
pubmed: 22869755
pmcid: 3427077
doi: 10.1073/pnas.1206906109
Lynch, C. J. et al. The RNA polymerase II factor RPAP1 is critical for mediator-driven transcription and cell identity. Cell Rep. 22, 396–410 (2018).
pubmed: 29320736
pmcid: 5775503
doi: 10.1016/j.celrep.2017.12.062
Plaisier, S. B., Taschereau, R., Wong, J. A. & Graeber, T. G. Rank–rank hypergeometric overlap: identification of statistically significant overlap between gene-expression signatures. Nucleic Acids Res. 38, e169 (2010).
pubmed: 20660011
pmcid: 2943622
doi: 10.1093/nar/gkq636
Castro-Diaz, N. et al. Evolutionally dynamic L1 regulation in embryonic stem cells. Genes Dev. 28, 1397–1409 (2014).
pubmed: 24939876
pmcid: 4083085
doi: 10.1101/gad.241661.114
Papadopoulou, T., Kaymak, A., Sayols, S. & Richly, H. Dual role of Med12 in PRC1-dependent gene repression and ncRNA-mediated transcriptional activation. Cell Cycle 15, 1479–1493 (2016).
pubmed: 27096886
pmcid: 4934080
doi: 10.1080/15384101.2016.1175797
Xiang, L. et al. A developmental landscape of 3D-cultured human pre-gastrulation embryos. Nature 577, 537–542 (2020).
pubmed: 31830756
doi: 10.1038/s41586-019-1875-y
Broude, E. V. et al. Expression of CDK8 and CDK8-interacting genes as potential biomarkers in breast cancer. Curr. Cancer Drug Targets 15, 739–749 (2015).
pubmed: 26452386
pmcid: 4755306
doi: 10.2174/156800961508151001105814
McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).
pubmed: 20436461
pmcid: 4840234
doi: 10.1038/nbt.1630