Microcephaly with altered cortical layering in GIT1 deficiency revealed by quantitative neuroimaging.


Journal

Magnetic resonance imaging
ISSN: 1873-5894
Titre abrégé: Magn Reson Imaging
Pays: Netherlands
ID NLM: 8214883

Informations de publication

Date de publication:
02 2021
Historique:
received: 07 07 2020
revised: 25 09 2020
accepted: 25 09 2020
pubmed: 4 10 2020
medline: 12 3 2021
entrez: 3 10 2020
Statut: ppublish

Résumé

G Protein-Coupled Receptor Kinase-Interacting Protein-1 (GIT1) regulates neuronal functions, including cell and axon migration and synapse formation and maintenance, and GIT1 knockout (KO) mice exhibit learning and memory deficits. We noted that male and female GIT1-KO mice exhibit neuroimaging phenotypes including microcephaly, and altered cortical layering, with a decrease in neuron density in cortical layer V. Micro-CT and magnetic resonance microscopy (MRM) were used to identify morphometric phenotypes for the skulls and throughout the GIT1-KO brains. High field MRM of actively-stained mouse brains from GIT1-KO and wild type (WT) controls (n = 6 per group) allowed segmenting 37 regions, based on co-registration to the Waxholm Space atlas. Overall brain size in GIT1-KO mice was ~32% smaller compared to WT controls. After correcting for brain size, several regions were significantly different in GIT1-KO mice relative to WT, including the gray matter of the ventral thalamic nuclei and the rest of the thalamus, the inferior colliculus, and pontine nuclei. GIT1-KO mice had reduced volume of white matter tracts, most notably in the anterior commissure (~26% smaller), but also in the cerebral peduncle, fornix, and spinal trigeminal tract. On the other hand, the basal ganglia appeared enlarged in GIT1-KO mice, including the globus pallidus, caudate putamen, and particularly the accumbens - supporting a possible vulnerability to addiction. Volume based morphometry based on high-resolution MRM (21.5 μm isotropic voxels) was effective in detecting overall, and local differences in brain volumes in GIT1-KO mice, including in white matter tracts. The reduced relative volume of specific brain regions suggests a critical, but not uniform, role for GIT1 in brain development, conducive to brain microcephaly, and aberrant connectivity.

Identifiants

pubmed: 33010377
pii: S0730-725X(20)30453-7
doi: 10.1016/j.mri.2020.09.023
pmc: PMC7802083
mid: NIHMS1649975
pii:
doi:

Substances chimiques

Cell Cycle Proteins 0
GTPase-Activating Proteins 0
Git1 protein, mouse 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

26-38

Subventions

Organisme : NCI NIH HHS
ID : U24 CA220245
Pays : United States
Organisme : NIA NIH HHS
ID : K01 AG041211
Pays : United States
Organisme : NIMH NIH HHS
ID : R21 MH090556
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG066184
Pays : United States
Organisme : NIA NIH HHS
ID : RF1 AG057895
Pays : United States
Organisme : NIBIB NIH HHS
ID : P41 EB015897
Pays : United States

Informations de copyright

Copyright © 2020 Elsevier Inc. All rights reserved.

Références

Neuroimage. 2016 Nov 15;142:498-511
pubmed: 27521741
Am J Psychiatry. 2009 Jan;166(1):74-82
pubmed: 19015232
Front Neural Circuits. 2017 May 17;11:33
pubmed: 28567005
Proc SPIE Int Soc Opt Eng. 2008 Apr 18;6913:691342
pubmed: 22049304
Bone. 2019 May;122:218-230
pubmed: 30853660
Neuron. 2001 Nov 8;32(3):415-24
pubmed: 11709153
Neuroimage. 1997 Nov;6(4):305-19
pubmed: 9417973
Cell Rep. 2014 Jun 12;7(5):1417-1425
pubmed: 24882013
ILAR J. 2008;49(1):35-53
pubmed: 18172332
J Cell Sci. 2013 Mar 1;126(Pt 5):1122-33
pubmed: 23321640
J Neurosci. 2005 Mar 30;25(13):3379-88
pubmed: 15800193
Nat Neurosci. 2007 Mar;10(3):301-10
pubmed: 17310244
Neuroimage. 2007 Sep 1;37(3):683-93
pubmed: 17627846
Neuron. 2010 Jan 14;65(1):7-19
pubmed: 20152109
Magn Reson Med. 2005 Nov;54(5):1311-6
pubmed: 16215960
Neurosci Lett. 2009 Jul 17;458(2):79-83
pubmed: 19383529
NMR Biomed. 2004 Dec;17(8):613-9
pubmed: 15761950
Neural Regen Res. 2016 Apr;11(4):549-51
pubmed: 27212906
Mol Cells. 2015 Jun;38(6):540-7
pubmed: 25997734
Mol Syndromol. 2019 May;10(3):139-146
pubmed: 31191202
Prog Neurobiol. 2002 Aug;67(5):393-420
pubmed: 12234501
J Cell Sci. 2016 May 15;129(10):1963-74
pubmed: 27182061
Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20807-12
pubmed: 24297929
Mol Cell. 2004 Sep 24;15(6):853-65
pubmed: 15383276
Circulation. 2009 Mar 24;119(11):1524-32
pubmed: 19273721
J Neurosci. 2013 Feb 13;33(7):2889-99
pubmed: 23407947
Cell Death Dis. 2018 Dec 13;9(12):1195
pubmed: 30546041
Proc Natl Acad Sci U S A. 2001 Jun 5;98(12):6593-8
pubmed: 11381105
Front Neuroinform. 2019 Dec 10;13:72
pubmed: 31920610
J Neurosci. 2005 Jun 15;25(24):5680-90
pubmed: 15958734
Neuroinformatics. 2019 Jul;17(3):451-472
pubmed: 30565026
Neuroimage. 2012 Feb 1;59(3):2298-306
pubmed: 21988893
J Comp Neurol. 1993 Feb 15;328(3):377-92
pubmed: 7680052
Neuroimage. 2007 Aug 1;37(1):82-9
pubmed: 17574443
Nat Med. 2011 May;17(5):566-72
pubmed: 21499268
Am J Med Genet B Neuropsychiatr Genet. 2015 Sep;168(6):492-507
pubmed: 26061966
Mol Cell. 1998 Jan;1(2):183-92
pubmed: 9659915
Nat Genet. 1998 Sep;20(1):25-30
pubmed: 9731525
Neuroimage. 2010 Apr 1;50(2):416-27
pubmed: 20035883
Neuroimage. 2007 Feb 15;34(4):1363-74
pubmed: 17185001
Nat Genet. 2000 Oct;26(2):247-50
pubmed: 11017088
Front Neuroanat. 2008 Apr 17;2:1
pubmed: 18958199
Magn Reson Med. 2016 Mar;75(3):1341-5
pubmed: 25920491
J Neurosci Methods. 2002 Oct 30;120(2):203-9
pubmed: 12385770
Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14082-7
pubmed: 9826657
Nat Methods. 2012 Jun 28;9(7):676-82
pubmed: 22743772
NMR Biomed. 2013 Nov;26(11):1562-81
pubmed: 23943390
Cereb Cortex. 2005 May;15(5):639-45
pubmed: 15342433
Brain Res. 2010 Mar 4;1317:218-26
pubmed: 20043896
Neuroimage. 2005 Aug 15;27(2):425-35
pubmed: 15908233
Hum Mol Genet. 2012 Jan 15;21(2):268-86
pubmed: 21989057
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2018 Mar 01;32(3):257-263
pubmed: 29806272
Methods Mol Biol. 2011;711:251-70
pubmed: 21279606
Neuroimage. 2010 Sep;52(3):1059-69
pubmed: 19819337
Cereb Cortex. 2015 Nov;25(11):4628-37
pubmed: 26048951
Mol Cell Biol. 2011 Feb;31(3):388-403
pubmed: 21115725
Magn Reson Imaging. 2019 Jul;60:52-67
pubmed: 30940494
J Cell Biol. 2003 Apr 14;161(1):131-42
pubmed: 12695502
Neuron. 2008 Jan 10;57(1):94-107
pubmed: 18184567
Front Neuroinform. 2020 May 28;14:24
pubmed: 32547380
J Comp Neurol. 1986 Feb 8;244(2):163-73
pubmed: 2419371
Front Neuroinform. 2014 Jul 30;8:67
pubmed: 25126069
Proc Natl Acad Sci U S A. 2019 Jul 23;116(30):15262-15271
pubmed: 31285321
Biochim Biophys Acta. 2013 Dec;1832(12):2352-67
pubmed: 24075941
Curr Opin Neurol. 2009 Aug;22(4):379-86
pubmed: 19542887
PLoS One. 2019 May 8;14(5):e0216596
pubmed: 31067263
Neuroimage. 2016 Jan 1;124(Pt A):612-626
pubmed: 26400013
Neuroimage. 2010 Nov 1;53(2):365-72
pubmed: 20600960
Neuron. 2015 Dec 2;88(5):918-925
pubmed: 26637799
Stud Health Technol Inform. 2013;185:153-84
pubmed: 23542935
Small GTPases. 2010 Jul;1(1):44-61
pubmed: 21686119
PLoS One. 2018 Mar 19;13(3):e0194350
pubmed: 29554125
Exp Neurobiol. 2015 Mar;24(1):8-16
pubmed: 25792865
PLoS Genet. 2008 Nov;4(11):e1000269
pubmed: 19023419
Toxicol Pathol. 2011 Jan;39(1):85-91
pubmed: 21119052
J Biol Chem. 2003 Feb 21;278(8):6291-300
pubmed: 12473661
Brain Struct Funct. 2018 Dec;223(9):4323-4335
pubmed: 30225830
J Cell Physiol. 2010 Nov;225(3):777-85
pubmed: 20568227
J Histochem Cytochem. 2007 Oct;55(10):1039-48
pubmed: 17565117
Psychol Rev. 2010 Apr;117(2):541-74
pubmed: 20438237
Eur J Neurosci. 2006 Nov;24(10):2801-12
pubmed: 17156205
Neuroimage. 2008 Jan 1;39(1):136-45
pubmed: 17933556
J Neurosci. 2003 Mar 1;23(5):1667-77
pubmed: 12629171

Auteurs

Alexandra Badea (A)

Department of Radiology, Duke University Medical Center, Durham, NC 27710, United States of America; Department of Neurology, Duke University Medical Center, Durham, NC 27710, United States of America; Departments of Biomedical Engineering, Duke University Medical Center, Durham, NC 27710, United States of America; Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States of America. Electronic address: alexandra.badea@duke.edu.

Robert Schmalzigaug (R)

Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States of America.

Woojoo Kim (W)

Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States of America.

Pamela Bonner (P)

Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States of America.

Umer Ahmed (U)

Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States of America.

G Allan Johnson (GA)

Department of Radiology, Duke University Medical Center, Durham, NC 27710, United States of America; Departments of Biomedical Engineering, Duke University Medical Center, Durham, NC 27710, United States of America.

Gary Cofer (G)

Department of Radiology, Duke University Medical Center, Durham, NC 27710, United States of America.

Mark Foster (M)

Department of Radiology, Duke University Medical Center, Durham, NC 27710, United States of America.

Robert J Anderson (RJ)

Department of Radiology, Duke University Medical Center, Durham, NC 27710, United States of America.

Cristian Badea (C)

Department of Radiology, Duke University Medical Center, Durham, NC 27710, United States of America; Departments of Biomedical Engineering, Duke University Medical Center, Durham, NC 27710, United States of America.

Richard T Premont (RT)

Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States of America. Electronic address: richard.premont@case.edu.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH