Microcephaly with altered cortical layering in GIT1 deficiency revealed by quantitative neuroimaging.
Brain networks
G protein-coupled receptor kinase-interacting Protein-1 (GIT1)
Magnetic resonance microscopy
Micro-CT
Morphometry
Shape analysis
Volume covariance
Journal
Magnetic resonance imaging
ISSN: 1873-5894
Titre abrégé: Magn Reson Imaging
Pays: Netherlands
ID NLM: 8214883
Informations de publication
Date de publication:
02 2021
02 2021
Historique:
received:
07
07
2020
revised:
25
09
2020
accepted:
25
09
2020
pubmed:
4
10
2020
medline:
12
3
2021
entrez:
3
10
2020
Statut:
ppublish
Résumé
G Protein-Coupled Receptor Kinase-Interacting Protein-1 (GIT1) regulates neuronal functions, including cell and axon migration and synapse formation and maintenance, and GIT1 knockout (KO) mice exhibit learning and memory deficits. We noted that male and female GIT1-KO mice exhibit neuroimaging phenotypes including microcephaly, and altered cortical layering, with a decrease in neuron density in cortical layer V. Micro-CT and magnetic resonance microscopy (MRM) were used to identify morphometric phenotypes for the skulls and throughout the GIT1-KO brains. High field MRM of actively-stained mouse brains from GIT1-KO and wild type (WT) controls (n = 6 per group) allowed segmenting 37 regions, based on co-registration to the Waxholm Space atlas. Overall brain size in GIT1-KO mice was ~32% smaller compared to WT controls. After correcting for brain size, several regions were significantly different in GIT1-KO mice relative to WT, including the gray matter of the ventral thalamic nuclei and the rest of the thalamus, the inferior colliculus, and pontine nuclei. GIT1-KO mice had reduced volume of white matter tracts, most notably in the anterior commissure (~26% smaller), but also in the cerebral peduncle, fornix, and spinal trigeminal tract. On the other hand, the basal ganglia appeared enlarged in GIT1-KO mice, including the globus pallidus, caudate putamen, and particularly the accumbens - supporting a possible vulnerability to addiction. Volume based morphometry based on high-resolution MRM (21.5 μm isotropic voxels) was effective in detecting overall, and local differences in brain volumes in GIT1-KO mice, including in white matter tracts. The reduced relative volume of specific brain regions suggests a critical, but not uniform, role for GIT1 in brain development, conducive to brain microcephaly, and aberrant connectivity.
Identifiants
pubmed: 33010377
pii: S0730-725X(20)30453-7
doi: 10.1016/j.mri.2020.09.023
pmc: PMC7802083
mid: NIHMS1649975
pii:
doi:
Substances chimiques
Cell Cycle Proteins
0
GTPase-Activating Proteins
0
Git1 protein, mouse
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
26-38Subventions
Organisme : NCI NIH HHS
ID : U24 CA220245
Pays : United States
Organisme : NIA NIH HHS
ID : K01 AG041211
Pays : United States
Organisme : NIMH NIH HHS
ID : R21 MH090556
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG066184
Pays : United States
Organisme : NIA NIH HHS
ID : RF1 AG057895
Pays : United States
Organisme : NIBIB NIH HHS
ID : P41 EB015897
Pays : United States
Informations de copyright
Copyright © 2020 Elsevier Inc. All rights reserved.
Références
Neuroimage. 2016 Nov 15;142:498-511
pubmed: 27521741
Am J Psychiatry. 2009 Jan;166(1):74-82
pubmed: 19015232
Front Neural Circuits. 2017 May 17;11:33
pubmed: 28567005
Proc SPIE Int Soc Opt Eng. 2008 Apr 18;6913:691342
pubmed: 22049304
Bone. 2019 May;122:218-230
pubmed: 30853660
Neuron. 2001 Nov 8;32(3):415-24
pubmed: 11709153
Neuroimage. 1997 Nov;6(4):305-19
pubmed: 9417973
Cell Rep. 2014 Jun 12;7(5):1417-1425
pubmed: 24882013
ILAR J. 2008;49(1):35-53
pubmed: 18172332
J Cell Sci. 2013 Mar 1;126(Pt 5):1122-33
pubmed: 23321640
J Neurosci. 2005 Mar 30;25(13):3379-88
pubmed: 15800193
Nat Neurosci. 2007 Mar;10(3):301-10
pubmed: 17310244
Neuroimage. 2007 Sep 1;37(3):683-93
pubmed: 17627846
Neuron. 2010 Jan 14;65(1):7-19
pubmed: 20152109
Magn Reson Med. 2005 Nov;54(5):1311-6
pubmed: 16215960
Neurosci Lett. 2009 Jul 17;458(2):79-83
pubmed: 19383529
NMR Biomed. 2004 Dec;17(8):613-9
pubmed: 15761950
Neural Regen Res. 2016 Apr;11(4):549-51
pubmed: 27212906
Mol Cells. 2015 Jun;38(6):540-7
pubmed: 25997734
Mol Syndromol. 2019 May;10(3):139-146
pubmed: 31191202
Prog Neurobiol. 2002 Aug;67(5):393-420
pubmed: 12234501
J Cell Sci. 2016 May 15;129(10):1963-74
pubmed: 27182061
Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20807-12
pubmed: 24297929
Mol Cell. 2004 Sep 24;15(6):853-65
pubmed: 15383276
Circulation. 2009 Mar 24;119(11):1524-32
pubmed: 19273721
J Neurosci. 2013 Feb 13;33(7):2889-99
pubmed: 23407947
Cell Death Dis. 2018 Dec 13;9(12):1195
pubmed: 30546041
Proc Natl Acad Sci U S A. 2001 Jun 5;98(12):6593-8
pubmed: 11381105
Front Neuroinform. 2019 Dec 10;13:72
pubmed: 31920610
J Neurosci. 2005 Jun 15;25(24):5680-90
pubmed: 15958734
Neuroinformatics. 2019 Jul;17(3):451-472
pubmed: 30565026
Neuroimage. 2012 Feb 1;59(3):2298-306
pubmed: 21988893
J Comp Neurol. 1993 Feb 15;328(3):377-92
pubmed: 7680052
Neuroimage. 2007 Aug 1;37(1):82-9
pubmed: 17574443
Nat Med. 2011 May;17(5):566-72
pubmed: 21499268
Am J Med Genet B Neuropsychiatr Genet. 2015 Sep;168(6):492-507
pubmed: 26061966
Mol Cell. 1998 Jan;1(2):183-92
pubmed: 9659915
Nat Genet. 1998 Sep;20(1):25-30
pubmed: 9731525
Neuroimage. 2010 Apr 1;50(2):416-27
pubmed: 20035883
Neuroimage. 2007 Feb 15;34(4):1363-74
pubmed: 17185001
Nat Genet. 2000 Oct;26(2):247-50
pubmed: 11017088
Front Neuroanat. 2008 Apr 17;2:1
pubmed: 18958199
Magn Reson Med. 2016 Mar;75(3):1341-5
pubmed: 25920491
J Neurosci Methods. 2002 Oct 30;120(2):203-9
pubmed: 12385770
Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14082-7
pubmed: 9826657
Nat Methods. 2012 Jun 28;9(7):676-82
pubmed: 22743772
NMR Biomed. 2013 Nov;26(11):1562-81
pubmed: 23943390
Cereb Cortex. 2005 May;15(5):639-45
pubmed: 15342433
Brain Res. 2010 Mar 4;1317:218-26
pubmed: 20043896
Neuroimage. 2005 Aug 15;27(2):425-35
pubmed: 15908233
Hum Mol Genet. 2012 Jan 15;21(2):268-86
pubmed: 21989057
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2018 Mar 01;32(3):257-263
pubmed: 29806272
Methods Mol Biol. 2011;711:251-70
pubmed: 21279606
Neuroimage. 2010 Sep;52(3):1059-69
pubmed: 19819337
Cereb Cortex. 2015 Nov;25(11):4628-37
pubmed: 26048951
Mol Cell Biol. 2011 Feb;31(3):388-403
pubmed: 21115725
Magn Reson Imaging. 2019 Jul;60:52-67
pubmed: 30940494
J Cell Biol. 2003 Apr 14;161(1):131-42
pubmed: 12695502
Neuron. 2008 Jan 10;57(1):94-107
pubmed: 18184567
Front Neuroinform. 2020 May 28;14:24
pubmed: 32547380
J Comp Neurol. 1986 Feb 8;244(2):163-73
pubmed: 2419371
Front Neuroinform. 2014 Jul 30;8:67
pubmed: 25126069
Proc Natl Acad Sci U S A. 2019 Jul 23;116(30):15262-15271
pubmed: 31285321
Biochim Biophys Acta. 2013 Dec;1832(12):2352-67
pubmed: 24075941
Curr Opin Neurol. 2009 Aug;22(4):379-86
pubmed: 19542887
PLoS One. 2019 May 8;14(5):e0216596
pubmed: 31067263
Neuroimage. 2016 Jan 1;124(Pt A):612-626
pubmed: 26400013
Neuroimage. 2010 Nov 1;53(2):365-72
pubmed: 20600960
Neuron. 2015 Dec 2;88(5):918-925
pubmed: 26637799
Stud Health Technol Inform. 2013;185:153-84
pubmed: 23542935
Small GTPases. 2010 Jul;1(1):44-61
pubmed: 21686119
PLoS One. 2018 Mar 19;13(3):e0194350
pubmed: 29554125
Exp Neurobiol. 2015 Mar;24(1):8-16
pubmed: 25792865
PLoS Genet. 2008 Nov;4(11):e1000269
pubmed: 19023419
Toxicol Pathol. 2011 Jan;39(1):85-91
pubmed: 21119052
J Biol Chem. 2003 Feb 21;278(8):6291-300
pubmed: 12473661
Brain Struct Funct. 2018 Dec;223(9):4323-4335
pubmed: 30225830
J Cell Physiol. 2010 Nov;225(3):777-85
pubmed: 20568227
J Histochem Cytochem. 2007 Oct;55(10):1039-48
pubmed: 17565117
Psychol Rev. 2010 Apr;117(2):541-74
pubmed: 20438237
Eur J Neurosci. 2006 Nov;24(10):2801-12
pubmed: 17156205
Neuroimage. 2008 Jan 1;39(1):136-45
pubmed: 17933556
J Neurosci. 2003 Mar 1;23(5):1667-77
pubmed: 12629171