The structure of a triple complex of plant photosystem I with ferredoxin and plastocyanin.


Journal

Nature plants
ISSN: 2055-0278
Titre abrégé: Nat Plants
Pays: England
ID NLM: 101651677

Informations de publication

Date de publication:
10 2020
Historique:
received: 01 04 2020
accepted: 03 09 2020
pubmed: 7 10 2020
medline: 31 3 2021
entrez: 6 10 2020
Statut: ppublish

Résumé

The ability of photosynthetic organisms to use sunlight as a sole source of energy is endowed by two large membrane complexes-photosystem I (PSI) and photosystem II (PSII). PSI and PSII are the fundamental components of oxygenic photosynthesis, providing oxygen, food and an energy source for most living organisms on Earth. Currently, high-resolution crystal structures of these complexes from various organisms are available. The crystal structures of megadalton complexes have revealed excitation transfer and electron-transport pathways within the various complexes. PSI is defined as plastocyanin-ferredoxin oxidoreductase but a high-resolution structure of the entire triple supercomplex is not available. Here, using a new cryo-electron microscopy technique, we solve the structure of native plant PSI in complex with its electron donor plastocyanin and the electron acceptor ferredoxin. We reveal all of the contact sites and the modes of interaction between the interacting electron carriers and PSI.

Identifiants

pubmed: 33020607
doi: 10.1038/s41477-020-00779-9
pii: 10.1038/s41477-020-00779-9
doi:

Substances chimiques

Ferredoxins 0
Photosystem I Protein Complex 0
Plastocyanin 9014-09-9

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1300-1305

Références

Barber, J. Engine of life and big bang of evolution: a personal perspective. Photosynth. Res. 80, 137–155 (2004).
pubmed: 16328816 doi: 10.1023/B:PRES.0000030662.04618.27
Nelson, N. Photosystems and global effects of oxygenic photosynthesis. Biochim. Biophys. Acta 1807, 856–863 (2011).
pubmed: 20955682 doi: 10.1016/j.bbabio.2010.10.011
Bengis, C. & Nelson, N. Purification and properties of the photosystem I reaction center from chloroplasts. J. Biol. Chem. 250, 2783–2788 (1975).
pubmed: 804481 doi: 10.1016/S0021-9258(19)41558-5
Jordan, P. et al. Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution. Nature 411, 909–917 (2001).
pubmed: 11418848 doi: 10.1038/35082000
Umena, Y., Kawakami, K., Shen, J. R. & Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 A. Nature 473, 55–60 (2011).
pubmed: 21499260 doi: 10.1038/nature09913
Mazor, Y., Borovikova, A., Caspy, I. & Nelson, N. Structure of the plant photosystem I supercomplex at 2.6 Å resolution. Nat. Plants 3, 17014 (2017).
pubmed: 28248295 doi: 10.1038/nplants.2017.14
Qin, X., Suga, M., Kuang, T. & Shen, J. R. Structural basis for energy transfer pathways in the plant PSI–LHCI supercomplex. Science 348, 989–995 (2015).
pubmed: 26023133 doi: 10.1126/science.aab0214
Mazor, Y., Nataf, D., Toporik, H. & Nelson, N. Crystal structures of virus-like photosystem I complexes from the mesophilic cyanobacterium Synechocystis PCC 6803. eLife 3, e01496 (2014).
pmcid: 3903132 doi: 10.7554/eLife.01496
Stroebel, D., Choquet, Y., Popot, J. L. & Picot, D. An atypical haem in the cytochrome b
pubmed: 14647374 doi: 10.1038/nature02155
Kurisu, G., Zhang, H., Smith, J. L. & Cramer, W. A. Structure of the cytochrome b
pubmed: 14526088 doi: 10.1126/science.1090165
Su, X. et al. Structure and assembly mechanism of plant C2S2M2-type PSII-LHCII supercomplex. Science 357, 815–820 (2017).
pubmed: 28839073 doi: 10.1126/science.aan0327
Nagao, R. et al. Structural basis for energy harvesting and dissipation in a diatom PSII–FCPII supercomplex. Nat. Plants 5, 890–901 (2019).
pubmed: 31358960 doi: 10.1038/s41477-019-0477-x
Sheng, X. et al. Structural insight into light harvesting for photosystem II in green algae. Nat. Plants 5, 1320–1330 (2019).
pubmed: 31768031 doi: 10.1038/s41477-019-0543-4
Ben-Shem, A., Frolow, F. & Nelson, N. The crystal structure of plant photosystem I. Nature 426, 630–635 (2003).
pubmed: 14668855 doi: 10.1038/nature02200
Fischer, N., Hippler, M., Sétif, P., Jacquot, J. P. & Rochaix, J. D. The PsaC subunit of photosystem I provides an essential lysine residue for fast electron transfer to ferredoxin. EMBO J. 17, 849–858 (1998).
pubmed: 9463363 pmcid: 1170434 doi: 10.1093/emboj/17.4.849
Fischer, N., Sétif, P. & Rochaix, J. D. Site-directed mutagenesis of the PsaC subunit of photosystem I: Fb is the cluster interacting with soluble ferredoxin. J. Biol. Chem. 274, 23333–23340 (1999).
pubmed: 10438510 doi: 10.1074/jbc.274.33.23333
Barth, P., Guillouard, I., Sétif, P. & Lagoutte, B. Essential role of a single arginine of photosystem I in stabilizing the electron transfer complex with ferredoxin. J. Biol. Chem. 275, 7030–7036 (2000).
pubmed: 10702267 doi: 10.1074/jbc.275.10.7030
Bottin, H., Hanley, J. & Lagoutte, B. Role of acidic amino acid residues of PsaD subunit on limiting the affinity of photosystem I for ferredoxin. Biochem. Biophys. Res. Commun. 287, 833–836 (2001).
pubmed: 11573938 doi: 10.1006/bbrc.2001.5658
Hanley, J., Sétif, P., Bottin, H. & Lagoutte, B. Mutagenesis of photosystem I in the region of the ferredoxin cross-linking site: modifications of positively charged amino acids. Biochemistry 35, 8563–8571 (1996).
pubmed: 8679617 doi: 10.1021/bi960399x
Chitnis, V. P., Jungs, Y. S., Albee, L., Golbeck, J. H. & Chitnis, P. R. Mutational analysis of photosystem I polypeptides: role of PsaD and the lysyl 106 residue in the reductase activity of the photosystem I. J. Biol. Chem. 271, 11772–11780 (1996).
pubmed: 8662633 doi: 10.1074/jbc.271.20.11772
Kubota-Kawai, H. et al. X-ray structure of an asymmetrical trimeric ferredoxin-photosystem I complex. Nat. Plants 4, 218–224 (2018).
pubmed: 29610537 doi: 10.1038/s41477-018-0130-0
Malavath, T., Caspy, I., Netzer-El, S. Y., Klaiman, D. & Nelson, N. Structure and function of wild-type and subunit-depleted photosystem I in Synechocystis. Biochim. Biophys. Acta 1859, 645–654 (2018).
doi: 10.1016/j.bbabio.2018.02.002
Kurisu, G. et al. Structure of the electron transfer complex between ferredoxin and ferredoxin-NADP
pubmed: 11175898 doi: 10.1038/84097
Dai, S. et al. Structural snapshots along the reaction pathway of ferredoxin-thioredoxin reductase. Nature 448, 92–96 (2007).
pubmed: 17611542 doi: 10.1038/nature05937
Kim, J. Y., Nakayama, M., Toyota, H., Kurisu, G. & Hase, T. Structural and mutational studies of an electron transfer complex of maize sulfite reductase and ferredoxin. J. Biochem. 160, 101–109 (2016).
pubmed: 26920048 doi: 10.1093/jb/mvw016
Cao, P. et al. Structural basis for energy and electron transfer of the photosystem I–IsiA–flavodoxin supercomplex. Nat. Plants 6, 167–176 (2020).
pubmed: 32042157 doi: 10.1038/s41477-020-0593-7
Netzer-El, S. Y., Caspy, I. & Nelson, N. Crystal structure of photosystem I monomer from Synechocystis PCC 6803. Front. Plant Sci. 9, 1865 (2019).
pubmed: 30662446 pmcid: 6328476 doi: 10.3389/fpls.2018.01865
Bengis, C. & Nelson, N. Subunit structure of chloroplast photosystem I reaction center. J. Biol. Chem. 252, 4564–4569 (1977).
pubmed: 17601 doi: 10.1016/S0021-9258(17)40199-2
Hippler, M. et al. The plastocyanin binding domain of photosystem I. EMBO J. 15, 6374–6384 (1996).
pubmed: 8978664 pmcid: 452461 doi: 10.1002/j.1460-2075.1996.tb01028.x
Antoshvili, M., Caspy, I., Hippler, M. & Nelson, N. Structure and function of photosystem I in Cyanidioschyzon merolae. Photosynth. Res. 139, 499–508 (2019).
pubmed: 29582227 doi: 10.1007/s11120-018-0501-4
Sommer, F., Drepper, F. & Hippler, M. The luminal helix l of PsaB is essential for recognition of plastocyanin or cytochrome c
pubmed: 11744732 doi: 10.1074/jbc.M110633200
Finazzi, G., Sommer, F. & Hippler, M. Release of oxidized plastocyanin from photosystem I limits electron transfer between photosystem I and cytochrome b
pubmed: 15870213 doi: 10.1073/pnas.0406288102 pmcid: 1100731
Kuhlgert, S., Drepper, F., Fufezan, C., Sommer, F. & Hippler, M. Residues PsaB Asp612 and PsaB Glu613 of photosystem I confer pH-dependent binding of plastocyanin and cytochrome c
pubmed: 22920401 doi: 10.1021/bi300898j
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
pubmed: 28250466 pmcid: 5494038
Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).
pubmed: 26278980 pmcid: 6760662 doi: 10.1016/j.jsb.2015.08.008
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).
pubmed: 30412051 pmcid: 6250425 doi: 10.7554/eLife.42166
Shkolnisky, Y. & Singer, A. Viewing directions estimation in Cryo-EM using synchronization. SIAM J. Imaging Sci. 5, 1088–1110 (2012).
doi: 10.1137/120863642
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).
pubmed: 20124702 doi: 10.1107/S0907444909052925 pmcid: 2815670
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
pubmed: 20383002 doi: 10.1107/S0907444910007493 pmcid: 2852313
Binda, C., Coda, A., Aliverti, A., Zanetti, G. & Mattevi, A. Structure of the mutant E92K of [2Fe-2S] ferredoxin I from Spinacia oleracea at 1.7 Å resolution. Acta Crystallogr. D 54, 1353–1358 (1998).
Moore, J. M. et al. High-resolution solution structure of reduced French bean plastocyanin and comparison with the crystal structure of poplar plastocyanin. J. Mol. Biol. 221, 533–555 (1991).
pubmed: 1920431 doi: 10.1016/0022-2836(91)80071-2
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D. 66, 12–21 (2010).
pubmed: 20057044 doi: 10.1107/S0907444909042073
Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of Cryo-EM density maps. Nat. Methods 11, 63–65 (2014).
pubmed: 24213166 doi: 10.1038/nmeth.2727
The PyMOL molecular graphics system v.1.2r3pre (Schrödinger).
Pettersen, E. F. et al. UCSF chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254
Perez Boerema, A. et al. Structure of a minimal photosystem I from a green alga. Nat. Plants 6, 321–327 (2020).
pubmed: 32123351 doi: 10.1038/s41477-020-0611-9
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
doi: 10.1016/S0022-2836(05)80360-2 pubmed: 2231712

Auteurs

Ido Caspy (I)

Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.

Anna Borovikova-Sheinker (A)

Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.

Daniel Klaiman (D)

Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.

Yoel Shkolnisky (Y)

School of Mathematical Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel. yoelsh@tauex.tau.ac.il.

Nathan Nelson (N)

Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel. nelson@tauex.tau.ac.il.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
alpha-Synuclein Humans Animals Mice Lewy Body Disease
Adenosine Triphosphate Adenosine Diphosphate Mitochondrial ADP, ATP Translocases Binding Sites Mitochondria

Conservation of the cooling agent binding pocket within the TRPM subfamily.

Kate Huffer, Matthew C S Denley, Elisabeth V Oskoui et al.
1.00
TRPM Cation Channels Animals Binding Sites Mice Pyrimidinones

Classifications MeSH