FBXO11 is a candidate tumor suppressor in the leukemic transformation of myelodysplastic syndrome.


Journal

Blood cancer journal
ISSN: 2044-5385
Titre abrégé: Blood Cancer J
Pays: United States
ID NLM: 101568469

Informations de publication

Date de publication:
06 10 2020
Historique:
received: 05 06 2020
accepted: 18 09 2020
revised: 15 09 2020
entrez: 7 10 2020
pubmed: 8 10 2020
medline: 7 5 2021
Statut: epublish

Résumé

Myelodysplastic syndrome (MDS) is a heterogeneous myeloid malignancy characterized by blood cell morphological dysplasia, ineffective clonal hematopoiesis, and risk of transformation to secondary acute myeloid leukemia (sAML). A number of genetic abnormalities have been identified in MDS and sAML, but sensitive sequencing methods can detect these mutations in nearly all healthy individuals by 60 years of age. To discover novel cellular pathways that accelerate MDS and sAML, we performed a CRISPR/Cas9 screen in the human MDS-L cell line. We report here that loss of the F-Box protein FBXO11, a component of the SCF ubiquitin ligase complex, confers cytokine independent growth to MDS-L cells, suggesting a tumor suppressor role for FBXO11 in myeloid malignancies. Putative FBXO11 substrates are enriched for proteins with functions in RNA metabolism and, of note, spliceosome mutations that are commonly found in MDS/sAML are rare in patients with low FBXO11 expression. We also reveal that loss of FBXO11 leads to significant changes in transcriptional pathways influencing leukocyte proliferation, differentiation, and apoptosis. Last, we find that FBXO11 expression is reduced in patients with secondary AML. We conclude that loss of FBXO11 is a mechanism for disease transformation of MDS into AML, and may represent a future therapeutic target.

Identifiants

pubmed: 33024076
doi: 10.1038/s41408-020-00362-7
pii: 10.1038/s41408-020-00362-7
pmc: PMC7538974
doi:

Substances chimiques

F-Box Proteins 0
Tumor Suppressor Proteins 0
FBXO11 protein, human EC 2.1.1.319
Protein-Arginine N-Methyltransferases EC 2.1.1.319

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

98

Subventions

Organisme : NCI NIH HHS
ID : R01 CA237039
Pays : United States
Organisme : NHLBI NIH HHS
ID : R35 HL135787
Pays : United States
Organisme : NCRR NIH HHS
ID : S10 RR027015
Pays : United States

Références

Sperling, A. S., Gibson, C. J. & Ebert, B. L. The genetics of myelodysplastic syndrome: from clonal haematopoiesis to secondary leukaemia. Nat. Rev. Cancer 17, 5–19 (2017).
doi: 10.1038/nrc.2016.112
Jaiswal, S. & Ebert, B. L. Clonal hematopoiesis in human aging and disease. Science 366, eaan4673 (2019).
doi: 10.1126/science.aan4673
Young, A. L., Challen, G. A., Birmann, B. M. & Druley, T. E. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat. Commun. 7, 12484 (2016).
doi: 10.1038/ncomms12484
Barreyro, L., Chlon, T. M. & Starczynowski, D. T. Chronic immune response dysregulation in MDS pathogenesis. Blood 132, 1553–1560 (2018).
doi: 10.1182/blood-2018-03-784116
Meisel, M. et al. Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host. Nature 557, 580–584 (2018).
doi: 10.1038/s41586-018-0125-z
Tohyama, K., Tsutani, H., Ueda, T., Nakamura, T. & Yoshida, Y. Establishment and characterization of a novel myeloid cell line from the bone marrow of a patient with the myelodysplastic syndrome. Br. J. Haematol. 87, 235–242 (1994).
doi: 10.1111/j.1365-2141.1994.tb04904.x
Rhyasen, G. et al. An MDS xenograft model utilizing a patient-derived cell line. Leukemia 28, 1142–1145 (2014).
doi: 10.1038/leu.2013.372
Rhyasen, G. W. et al. Targeting IRAK1 as a therapeutic approach for myelodysplastic syndrome. Cancer Cell 24, 90–104 (2013).
doi: 10.1016/j.ccr.2013.05.006
Skaar, J. R., Pagan, J. K. & Pagano, M. Mechanisms and function of substrate recruitment by F-box proteins. Nat. Rev. Mol. Cell Biol. 14, 369–381 (2013).
doi: 10.1038/nrm3582
Duan, S. et al. FBXO11 targets BCL6 for degradation and is inactivated in diffuse large B-cell lymphomas. Nature 481, 90–93 (2012).
doi: 10.1038/nature10688
Pighi, C. et al. FBXO11 is recurrently mutated in Burkitt lymphoma and its inactivation accelerates lymphomagenesis in Eμ-myc mice. Clin. Cancer Res. 23, PR10 (2017).
Mo, A. et al. Loss of FBXO11 functions drives acute myeloid leukemia. Exp. Hematol. 76, 3097 (2019). Abstract.
doi: 10.1016/j.exphem.2019.06.407
Fang, J. et al. A calcium- and calpain-dependent pathway determines the response to lenalidomide in myelodysplastic syndromes. Nat. Med. 22, 727–734 (2016).
doi: 10.1038/nm.4127
Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016).
doi: 10.1038/nbt.3437
Spahn, P. N. et al. PinAPL-Py: a comprehensive web-application for the analysis of CRISPR/Cas9 screens. Sci. Rep. 7, 1–8 (2017).
doi: 10.1038/s41598-017-16193-9
Dwivedi P., et al. SWATH‐proteomics of ibrutinib’s action in myeloid leukemia initiating mutated G‐CSFR signaling. Proteom. Clin. Appl. 14, 1900144 (2020).
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2009).
doi: 10.1093/bioinformatics/btp616
Colaprico, A. et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 44, e71–e71 (2015).
doi: 10.1093/nar/gkv1507
Tyner, J. W. et al. Functional genomic landscape of acute myeloid leukaemia. Nature 562, 526–531 (2018).
doi: 10.1038/s41586-018-0623-z
Kim, E. et al. SRSF2 mutations contribute to myelodysplasia by mutant-specific effects on exon recognition. Cancer Cell 27, 617–630 (2015).
doi: 10.1016/j.ccell.2015.04.006
Yoshida, K. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64–69 (2011).
doi: 10.1038/nature10496
Bagger, F. O., Kinalis, S. & Rapin, N. BloodSpot: a database of healthy and malignant haematopoiesis updated with purified and single cell mRNA sequencing profiles. Nucleic Acids Res. 47, D881–D5 (2018).
doi: 10.1093/nar/gky1076
Schneider, C. et al. FBXO11 inactivation leads to abnormal germinal-center formation and lymphoproliferative disease. Blood 128, 660–666 (2016).
doi: 10.1182/blood-2015-11-684357
Roboz, G. J. et al. Randomized trial of 10 days of decitabine ± bortezomib in untreated older patients with AML: CALGB 11002 (Alliance). Blood Adv. 2, 3608–3617 (2018).
doi: 10.1182/bloodadvances.2018023689
Attar, E. C. et al. Bortezomib added to daunorubicin and cytarabine during induction therapy and to intermediate-dose cytarabine for consolidation in patients with previously untreated acute myeloid leukemia age 60 to 75 years: CALGB (Alliance) study 10502. J. Clin. Oncol. 31, 923–929 (2013).
doi: 10.1200/JCO.2012.45.2177
Abida, W. M., Nikolaev, A., Zhao, W., Zhang, W. & Gu, W. FBXO11 promotes the Neddylation of p53 and inhibits its transcriptional activity. J. Biol. Chem. 282, 1797–804 (2007).
doi: 10.1074/jbc.M609001200
Döhner, H. et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 129, 424–447 (2017).
doi: 10.1182/blood-2016-08-733196

Auteurs

Michael Schieber (M)

Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.

Christian Marinaccio (C)

Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.

Lyndsey C Bolanos (LC)

Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

Wendy D Haffey (WD)

UC Proteomics Laboratory, University of Cincinnati, Cincinnati, OH, USA.
Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA.

Kenneth D Greis (KD)

UC Proteomics Laboratory, University of Cincinnati, Cincinnati, OH, USA.
Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA.

Daniel T Starczynowski (DT)

Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA.
Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.

John D Crispino (JD)

Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA. john.crispino@stjude.org.
Division of Experimental Hematology, Department of Hematology, St. Jude Children's Hospital, Memphis, TN, USA. john.crispino@stjude.org.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH