Surgical Site Infections after glioblastoma surgery: results of a multicentric retrospective study.


Journal

Infection
ISSN: 1439-0973
Titre abrégé: Infection
Pays: Germany
ID NLM: 0365307

Informations de publication

Date de publication:
Apr 2021
Historique:
received: 03 08 2020
accepted: 28 09 2020
pubmed: 10 10 2020
medline: 26 11 2021
entrez: 9 10 2020
Statut: ppublish

Résumé

The effects of surgical site infections (SSI) after glioblastoma surgery on patient outcomes are understudied. The aim of this retrospective multicenter study was to evaluate the impact of SSI on the survival of glioblastoma patients. Data from SSI cases after glioblastoma surgeries between 2009 and 2016 were collected from 14 French neurosurgical centers. Collected data included patient demographics, previous medical history, risk factors, details of the surgical procedure, radiotherapy/chemotherapy, infection characteristics, and infection management. Similar data were collected from gender- and age-paired control individuals. We used the medical records of 77 SSI patients and 58 control individuals. 13 were excluded. Our analyses included data from 64 SSI cases and 58 non-infected glioblastoma patients. Infections occurred after surgery for primary tumors in 38 cases (group I) and after surgery for a recurrent tumor in 26 cases (group II). Median survival was 381, 633, and 547 days in patients of group I, group II, and the control group, respectively. Patients in group I had significantly shorter survival compared to the other two groups (p < 0.05). The one-year survival rate of patients who developed infections after surgery for primary tumors was 50%. Additionally, we found that SSIs led to postoperative treatment discontinuation in 30% of the patients. Our findings highlighted the severity of SSIs after glioblastoma surgery, as they significantly affect patient survival. The establishment of preventive measures, as well as guidelines for the management of SSIs, is of high clinical importance.

Sections du résumé

BACKGROUND BACKGROUND
The effects of surgical site infections (SSI) after glioblastoma surgery on patient outcomes are understudied. The aim of this retrospective multicenter study was to evaluate the impact of SSI on the survival of glioblastoma patients.
METHODS METHODS
Data from SSI cases after glioblastoma surgeries between 2009 and 2016 were collected from 14 French neurosurgical centers. Collected data included patient demographics, previous medical history, risk factors, details of the surgical procedure, radiotherapy/chemotherapy, infection characteristics, and infection management. Similar data were collected from gender- and age-paired control individuals.
RESULTS RESULTS
We used the medical records of 77 SSI patients and 58 control individuals. 13 were excluded. Our analyses included data from 64 SSI cases and 58 non-infected glioblastoma patients. Infections occurred after surgery for primary tumors in 38 cases (group I) and after surgery for a recurrent tumor in 26 cases (group II). Median survival was 381, 633, and 547 days in patients of group I, group II, and the control group, respectively. Patients in group I had significantly shorter survival compared to the other two groups (p < 0.05). The one-year survival rate of patients who developed infections after surgery for primary tumors was 50%. Additionally, we found that SSIs led to postoperative treatment discontinuation in 30% of the patients.
DISCUSSION CONCLUSIONS
Our findings highlighted the severity of SSIs after glioblastoma surgery, as they significantly affect patient survival. The establishment of preventive measures, as well as guidelines for the management of SSIs, is of high clinical importance.

Identifiants

pubmed: 33034890
doi: 10.1007/s15010-020-01534-0
pii: 10.1007/s15010-020-01534-0
doi:

Types de publication

Journal Article Multicenter Study

Langues

eng

Sous-ensembles de citation

IM

Pagination

267-275

Références

Marenco-Hillembrand L, Wijesekera O, Suarez-Meade P, et al. Trends in glioblastoma: outcomes over time and type of intervention: a systematic evidence based analysis. J Neurooncol. 2020;147:297–307. https://doi.org/10.1007/s11060-020-03451-6 .
doi: 10.1007/s11060-020-03451-6 pubmed: 32157552
Ening G, Osterheld F, Capper D, et al. Risk factors for glioblastoma therapy associated complications. Clin Neurol Neurosurg. 2015;134:55–9. https://doi.org/10.1016/j.clineuro.2015.01.006 .
doi: 10.1016/j.clineuro.2015.01.006 pubmed: 25942630
Gulati S, Jakola AS, Nerland US, et al. The risk of getting worse: surgically acquired deficits, perioperative complications, and functional outcomes after primary resection of glioblastoma. World Neurosurg. 2011;76:572–9. https://doi.org/10.1016/j.wneu.2011.06.014 .
doi: 10.1016/j.wneu.2011.06.014 pubmed: 22251506
Karsy M, Yoon N, Boettcher L, et al. Surgical treatment of glioblastoma in the elderly: the impact of complications. J Neurooncol. 2018;138:123–32. https://doi.org/10.1007/s11060-018-2777-9 .
doi: 10.1007/s11060-018-2777-9 pubmed: 29392589
Abode-Iyamah KO, Chiang H-Y, Winslow N, et al. Risk factors for surgical site infections and assessment of vancomycin powder as a preventive measure in patients undergoing first-time cranioplasty. J Neurosurg. 2018;128:1241–9. https://doi.org/10.3171/2016.12.JNS161967 .
doi: 10.3171/2016.12.JNS161967 pubmed: 28498056
Abu Hamdeh S, Lytsy B, Ronne-Engström E. Surgical site infections in standard neurosurgery procedures- a study of incidence, impact and potential risk factors. Br J Neurosurg. 2014;28:270–5. https://doi.org/10.3109/02688697.2013.835376 .
doi: 10.3109/02688697.2013.835376 pubmed: 24588653
Chiang H-Y, Kamath AS, Pottinger JM, et al. Risk factors and outcomes associated with surgical site infections after craniotomy or craniectomy. J Neurosurg. 2014;120:509–21. https://doi.org/10.3171/2013.9.JNS13843 .
doi: 10.3171/2013.9.JNS13843 pubmed: 24205908
Davies BM, Jones A, Patel HC. Implementation of a care bundle and evaluation of risk factors for surgical site infection in cranial neurosurgery. Clin Neurol Neurosurg. 2016;144:121–5. https://doi.org/10.1016/j.clineuro.2016.03.025 .
doi: 10.1016/j.clineuro.2016.03.025 pubmed: 27046291
Fang C, Zhu T, Zhang P, et al. Risk factors of neurosurgical site infection after craniotomy: a systematic review and meta-analysis. Am J Infect Control. 2017;45:e123–e134134. https://doi.org/10.1016/j.ajic.2017.06.009 .
doi: 10.1016/j.ajic.2017.06.009 pubmed: 28751035
Jiménez-Martínez E, Cuervo G, Hornero A, et al. Risk factors for surgical site infection after craniotomy: a prospective cohort study. Antimicrob Resist Infect Control. 2019;8:69. https://doi.org/10.1186/s13756-019-0525-3 .
doi: 10.1186/s13756-019-0525-3 pubmed: 31073400 pmcid: 6498621
Nathoo N, Nadvi SS, van Dellen JR, Gouws E. Intracranial subdural empyemas in the era of computed tomography: a review of 699 cases. Neurosurgery. 1999;44:529–35. https://doi.org/10.1097/00006123-199903000-00055 .
doi: 10.1097/00006123-199903000-00055 pubmed: 10069590
Tenney JH, Vlahov D, Salcman M, Ducker TB. Wide variation in risk of wound infection following clean neurosurgery. Implications for perioperative antibiotic prophylaxis. J Neurosurg. 1985;62:243–7. https://doi.org/10.3171/jns.1985.62.2.0243 .
doi: 10.3171/jns.1985.62.2.0243 pubmed: 3968563
Barnes S, Spencer M, Graham D, Johnson HB. Surgical wound irrigation: a call for evidence-based standardization of practice. Am J Infect Control. 2014;42:525–9. https://doi.org/10.1016/j.ajic.2014.01.012 .
doi: 10.1016/j.ajic.2014.01.012 pubmed: 24773788
Mangram AJ, Horan TC, Pearson ML, et al. Guideline for prevention of surgical site infection, 1999. Centers for Disease Control and Prevention (CDC) hospital infection control practices advisory committee. Am J Infect Control. 1999;27:97–132.
doi: 10.1016/S0196-6553(99)70088-X
McClelland S, Hall WA. Postoperative central nervous system infection: incidence and associated factors in 2111 neurosurgical procedures. Clin Infect Dis. 2007;45:55–9.
doi: 10.1086/518580
Shi Z-H, Xu M, Wang Y-Z, et al. Post-craniotomy intracranial infection in patients with brain tumors: a retrospective analysis of 5723 consecutive patients. Br J Neurosurg. 2017;31:5–9. https://doi.org/10.1080/02688697.2016.1253827 .
doi: 10.1080/02688697.2016.1253827 pubmed: 27845572
Chaichana KL, Kone L, Bettegowda C, et al. Risk of surgical site infection in 401 consecutive patients with glioblastoma with and without carmustine wafer implantation. Neurol Res. 2015;37:717–26. https://doi.org/10.1179/1743132815Y.0000000042 .
doi: 10.1179/1743132815Y.0000000042 pubmed: 25916669
Dickinson H, Carico C, Nuño M, et al. Unplanned readmissions and survival following brain tumor surgery. J Neurosurg. 2015;122:61–8. https://doi.org/10.3171/2014.8.JNS1498 .
doi: 10.3171/2014.8.JNS1498 pubmed: 25343184
Alexiou G, Kallinteri A, Levidiotou S, et al. The influence of postoperative infection in survival of patients with high-grade gliomas. Neuroimmunol Neuroinflammation. 2015;2:18. https://doi.org/10.4103/2347-8659.149418 .
doi: 10.4103/2347-8659.149418
Bowles AP, Perkins E. Long-term remission of malignant brain tumors after intracranial infection: a report of four cases. Neurosurgery. 1999;44:636–42. https://doi.org/10.1097/00006123-199903000-00110 .
doi: 10.1097/00006123-199903000-00110 pubmed: 10069601
Naganuma H, Sasaki A, Satoh E, et al. Long-term survival in a young patient with anaplastic glioma. Brain Tumor Pathol. 1997;14:71–4. https://doi.org/10.1007/bf02478872 .
doi: 10.1007/bf02478872 pubmed: 9384806
De Bonis P, Albanese A, Lofrese G, et al. Postoperative infection may influence survival in patients with glioblastoma: simply a myth? Neurosurgery. 2011;69:864–8. https://doi.org/10.1227/NEU.0b013e318222adfa .
doi: 10.1227/NEU.0b013e318222adfa pubmed: 21900810
CDC. 2020 NHSN Surgical Site Infection (SSI) checklist. https://www.cdc.gov/nhsn/pdfs/checklists/ssi-checklist-508.pdf
Bruce J, Russell EM, Mollison J, Krukowski ZH. The measurement and monitoring of surgical adverse events. Health Technol Assess. 2001;5:1–194. https://doi.org/10.3310/hta5220 .
doi: 10.3310/hta5220 pubmed: 11532239
Cruse PJ, Foord R. The epidemiology of wound infection. A 10-year prospective study of 62,939 wounds. Surg Clin North Am. 1980;60:27–40. https://doi.org/10.1016/s0039-6109(16)42031-1 .
doi: 10.1016/s0039-6109(16)42031-1 pubmed: 7361226
Horan TC, Gaynes RP, Martone WJ, et al. CDC definitions of nosocomial surgical site infections, 1992: a modification of CDC definitions of surgical wound infections. Infect Control Hosp Epidemiol. 1992;13:606–8.
doi: 10.2307/30148464
Nota SPFT, Braun Y, Ring D, Schwab JH. Incidence of surgical site infection after spine surgery: what is the impact of the definition of infection? Clin Orthop Relat Res. 2015;473:1612–9. https://doi.org/10.1007/s11999-014-3933-y .
doi: 10.1007/s11999-014-3933-y pubmed: 25212963
Apisarnthanarak A, Jones M, Waterman BM, et al. Risk factors for spinal surgical-site infections in a community hospital: a case-control study. Infect Control Hosp Epidemiol. 2003;24:31–6. https://doi.org/10.1086/502112 .
doi: 10.1086/502112 pubmed: 12558233
Erman T, Demirhindi H, Göçer AI, et al. Risk factors for surgical site infections in neurosurgery patients with antibiotic prophylaxis. Surg Neurol. 2005;63:107–12. https://doi.org/10.1016/j.surneu.2004.04.024 .
doi: 10.1016/j.surneu.2004.04.024 pubmed: 15680644
Korinek AM. Risk factors for neurosurgical site infections after craniotomy: a prospective multicenter study of 2944 patients. The French Study Group of Neurosurgical Infections, the SEHP, and the C-CLIN Paris-Nord Service. Epidémiologie Hygiène et Prévention. Neurosurgery. 1997;41:1073–9. https://doi.org/10.1097/00006123-199711000-00010 .
doi: 10.1097/00006123-199711000-00010 pubmed: 9361061
Korinek A-M, Baugnon T, Golmard J-L, et al. Risk Factors for Adult Nosocomial Meningitis after Craniotomy Role of Antibiotic Prophylaxis. Neurosurgery. 2006;59:126–33. https://doi.org/10.1227/01.neu.0000243291.61566.21 .
doi: 10.1227/01.neu.0000243291.61566.21 pubmed: 16823308
L Adelaide for Lyon Bone and Joint Infection Study Group. Autologous bone flap infection following craniectomy : clinical experience in a referral center. San Diego: L Adelaide for Lyon Bone and Joint Infection Study Group; 2015.
Haruki Y, Hagiya H, Takahashi Y, et al. Risk factors for Propionibacterium acnes infection after neurosurgery: a case-control study. Journal of Infection and Chemotherapy. 2017;23:256–8. https://doi.org/10.1016/j.jiac.2016.10.003 .
doi: 10.1016/j.jiac.2016.10.003 pubmed: 27889246
Kelly ME, Fourney DR, Guzman R, et al. Propionibacterium acnes infections after cranial neurosurgery. Can j neurol sci. 2006;33:292–5. https://doi.org/10.1017/S0317167100005151 .
doi: 10.1017/S0317167100005151 pubmed: 17001816
Nisbet M, Briggs S, Ellis-Pegler R, et al. Propionibacterium acnes: an under-appreciated cause of post-neurosurgical infection. J Antimicrob Chemother. 2007;60:1097–103. https://doi.org/10.1093/jac/dkm351 .
doi: 10.1093/jac/dkm351 pubmed: 17875606
Blomstedt GC. Infections in neurosurgery: A retrospective study of 1143 patients and 1517 operations. Acta neurochir. 1985;78:81–90. https://doi.org/10.1007/BF01808684 .
doi: 10.1007/BF01808684 pubmed: 3911746
Gaillard T, Gilsbach JM. Intra-operative antibiotic prophylaxis in neurosurgery. A prospective, randomized, controlled study on cefotiam. Acta neurochir. 1991;113:103–9. https://doi.org/10.1007/BF01403193 .
doi: 10.1007/BF01403193 pubmed: 1799151
Chowdhary SA, Ryken T, Newton HB. Survival outcomes and safety of carmustine wafers in the treatment of high-grade gliomas: a meta-analysis. J Neurooncol. 2015;122:367–82. https://doi.org/10.1007/s11060-015-1724-2 .
doi: 10.1007/s11060-015-1724-2 pubmed: 25630625 pmcid: 4368843
Auguste KI, McDermott MW. Salvage of infected craniotomy bone flaps with the wash-in, wash-out indwelling antibiotic irrigation system. Technical note and case series of 12 patients. J Neurosurg. 2006;105:640–4. https://doi.org/10.3171/jns.2006.105.4.640 .
doi: 10.3171/jns.2006.105.4.640 pubmed: 17044572
Bruce JN, Bruce SS. Preservation of bone flaps in patients with postcraniotomy infections. J Neurosurg. 2003;98:1203–7. https://doi.org/10.3171/jns.2003.98.6.1203 .
doi: 10.3171/jns.2003.98.6.1203 pubmed: 12816265
Delgado-López PD, Martín-Velasco V, Castilla-Díez JM, et al. Preservation of bone flap after craniotomy infection. Neurocirugia (Astur). 2009;20:124–31. https://doi.org/10.1016/s1130-1473(09)70179-4 .
doi: 10.1016/s1130-1473(09)70179-4
Erickson DL, Seljeskog EL, Chou SN. Suction-irrigation treatment of craniotomy infections. Technical note J Neurosurg. 1974;41:265–7. https://doi.org/10.3171/jns.1974.41.2.0265 .
doi: 10.3171/jns.1974.41.2.0265 pubmed: 4841882
Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96. https://doi.org/10.1056/NEJMoa043330 .
doi: 10.1056/NEJMoa043330 pubmed: 15758009
Braxton EE, Ehrlich GD, Hall-Stoodley L, et al. Role of biofilms in neurosurgical device-related infections. Neurosurg Rev. 2005;28:249–55. https://doi.org/10.1007/s10143-005-0403-8 .
doi: 10.1007/s10143-005-0403-8 pubmed: 15991051
Gristina AG, Oga M, Webb LX, Hobgood CD. Adherent bacterial colonization in the pathogenesis of osteomyelitis. Science. 1985;228:990–3. https://doi.org/10.1126/science.4001933 .
doi: 10.1126/science.4001933 pubmed: 4001933
Ravikumar V, Ho AL, Pendhakar AV, et al. The Use of Vancomycin Powder for Surgical Prophylaxis Following Craniotomy. Neurosurgery. 2017;80:754–8. https://doi.org/10.1093/neuros/nyw127 .
doi: 10.1093/neuros/nyw127 pubmed: 28327930

Auteurs

Henri Salle (H)

Neurochirurgie, CHU de Limoges, Limoges, France. henrisalle1@gmail.com.
CAPTuR, EA 3842, Université de Limoges, Limoges, France. henrisalle1@gmail.com.

Elise Deluche (E)

Oncologie médicale, CHU de Limoges, Limoges, France.

Elodie Couvé-Deacon (E)

Hygiène, CHU de Limoges, Limoges, France.

Anne-Claire Beaujeux (AC)

Neurochirurgie, CHU de Limoges, Limoges, France.

Johan Pallud (J)

Neurochirurgie, GHU Paris - Hôpital Sainte-Anne, Paris, France.
IMA-BRAIN, UMR1266, Inserm, Paris, France.

Alexandre Roux (A)

Neurochirurgie, GHU Paris - Hôpital Sainte-Anne, Paris, France.
IMA-BRAIN, UMR1266, Inserm, Paris, France.

Arnaud Dagain (A)

Neurochirurgie, BCRM Toulon, HIA Sainte-Anne, Toulon, France.

Amaury de Barros (A)

Neurochirurgie, CHU de Toulouse, Hopital Pierre-Paul Riquet, Toulouse, France.

Jimmy Voirin (J)

Neurochirurgie, Hôpitaux Civils de Colmar, Colmar, France.
Neurochirurgie, CHU de Strasbourg, Strasbourg, France.

Romuald Seizeur (R)

Neurochirurgie, Hôpital de La Cavale Blanche, CHU de Brest, Brest, France.
Université de BREST, LaTIM INSERM UMR 1101, Brest, France.

Houda Belmabrouk (H)

Neurochirurgie, Hôpital de La Cavale Blanche, CHU de Brest, Brest, France.

Leslie Lemnos (L)

Neurochirurgie, CHU de Limoges, Limoges, France.

Evelyne Emery (E)

Neurochirurgie, CHU Caen Normandie, Caen, France.
Université CAEN Normandie, Inserm U 12 37, Cycéron, Caen, France.

Marie-Jeanne Fotso (MJ)

Neurochirurgie, CHU de Saint-Etienne, Saint-Etienne, France.

Julien Engelhardt (J)

Neurochirurgie, CHU de Bordeaux, Bordeaux, France.

Vincent Jecko (V)

Neurochirurgie, CHU de Bordeaux, Bordeaux, France.
INCIA, UMR 5287, Université de Bordeaux, CNRS, Bordeaux, France.

Ilyess Zemmoura (I)

Neurochirurgie, CHU de Tours, Tours, France.
iBrain, UMR 1253, Université de Tours, Inserm, Tours, France.

Tuan Le Van (T)

Neurochirurgie, CHU de Dijon, Dijon, France.

Moncef Berhouma (M)

Neurochirurgie, CHU de Lyon, Hôpital Neurologique Pierre Wertheimer, Lyon, France.
Creatis Laboratory, , CNRS UMR 5220, INSERM U1206, Université Lyon 1/INSA, Lyon, France.

Hélène Cebula (H)

Neurochirurgie, CHU de Strasbourg, Strasbourg, France.

Matthieu Peyre (M)

Neurochirurgie, APHP, Groupe Hospitalier Pitié Salpêtrière, Paris, France.
Genetics and Development of Brain Tumors - CRICM INSERM U1127 CNRS UMR 7225, Paris, France.

Pierre-Marie Preux (PM)

Centre d'Epidémiologie, CHU de Limoges, de Biostatistiques Et de Méthodologie de La Recherche CEBIMER, Limoges, France.

François Caire (F)

Neurochirurgie, CHU de Limoges, Limoges, France.
XLIM, UMR 7252, Université de Limoges, CNRS, Limoges, France.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH