MYC as a driver of stochastic chromatin networks: implications for the fitness of cancer cells.
Journal
Nucleic acids research
ISSN: 1362-4962
Titre abrégé: Nucleic Acids Res
Pays: England
ID NLM: 0411011
Informations de publication
Date de publication:
04 11 2020
04 11 2020
Historique:
accepted:
11
10
2020
revised:
09
09
2020
received:
09
07
2020
pubmed:
15
10
2020
medline:
21
11
2020
entrez:
14
10
2020
Statut:
ppublish
Résumé
The relationship between stochastic transcriptional bursts and dynamic 3D chromatin states is not well understood. Using an innovated, ultra-sensitive technique, we address here enigmatic features underlying the communications between MYC and its enhancers in relation to the transcriptional process. MYC thus interacts with its flanking enhancers in a mutually exclusive manner documenting that enhancer hubs impinging on MYC detected in large cell populations likely do not exist in single cells. Dynamic encounters with pathologically activated enhancers responsive to a range of environmental cues, involved <10% of active MYC alleles at any given time in colon cancer cells. Being the most central node of the chromatin network, MYC itself likely drives its communications with flanking enhancers, rather than vice versa. We submit that these features underlie an acquired ability of MYC to become dynamically activated in response to a diverse range of environmental cues encountered by the cell during the neoplastic process.
Identifiants
pubmed: 33051686
pii: 5922798
doi: 10.1093/nar/gkaa817
pmc: PMC7641766
doi:
Substances chimiques
Proto-Oncogene Proteins c-myc
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
10867-10876Informations de copyright
© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.
Références
Cell. 2017 Oct 5;171(2):305-320.e24
pubmed: 28985562
Genome Res. 2015 Apr;25(4):504-13
pubmed: 25677180
Nucleic Acids Res. 2008 Aug;36(14):4629-40
pubmed: 18621783
Cell. 2014 Oct 9;159(2):374-387
pubmed: 25303531
Science. 2013 Dec 6;342(6163):1188-93
pubmed: 24311680
Nucleic Acids Res. 1995 Jan 11;23(1):72-80
pubmed: 7870592
Nature. 2016 Dec 8;540(7632):296-300
pubmed: 27919068
Cell. 2014 Oct 23;159(3):543-57
pubmed: 25417106
Cell. 2013 Dec 19;155(7):1507-20
pubmed: 24360274
Cell Res. 2014 May;24(5):513-31
pubmed: 24662484
Nat Methods. 2011 Nov 29;8(12):989-90
pubmed: 22127213
BMC Genomics. 2015 Feb 25;16:121
pubmed: 25887659
Elife. 2014 Dec 24;3:e04236
pubmed: 25537195
Nat Protoc. 2008;3(2):303-13
pubmed: 18274532
Science. 2009 Oct 9;326(5950):289-93
pubmed: 19815776
Nat Genet. 2016 Aug;48(8):895-903
pubmed: 27376235
Nat Genet. 2019 Dec;51(12):1723-1731
pubmed: 31784729
Nature. 2017 Apr 6;544(7648):59-64
pubmed: 28289288
Cancer Genet Cytogenet. 2005 Sep;161(2):174-7
pubmed: 16102590
Cell. 2013 Nov 7;155(4):934-47
pubmed: 24119843
PLoS Genet. 2013;9(12):e1004018
pubmed: 24385922
Cell. 2013 Apr 11;153(2):320-34
pubmed: 23582323
Genes Dev. 2004 Jun 15;18(12):1495-509
pubmed: 15198986
Mol Cell. 2015 Apr 16;58(2):362-70
pubmed: 25801169
Nature. 2009 Nov 5;462(7269):58-64
pubmed: 19890323
Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4173-8
pubmed: 24594601
Nature. 2013 Oct 3;502(7469):59-64
pubmed: 24067610
Nature. 2012 Apr 11;485(7398):376-80
pubmed: 22495300
Mol Cell. 2009 Sep 24;35(6):741-53
pubmed: 19782025
Genes Dev. 2009 Nov 15;23(22):2598-603
pubmed: 19933149
PLoS One. 2010 Apr 27;5(4):e10232
pubmed: 20436911
Cold Spring Harb Symp Quant Biol. 2010;75:493-500
pubmed: 21467146