Laminar analysis of the cortical T1/T2-weighted ratio at 7T.
Journal
Neurology(R) neuroimmunology & neuroinflammation
ISSN: 2332-7812
Titre abrégé: Neurol Neuroimmunol Neuroinflamm
Pays: United States
ID NLM: 101636388
Informations de publication
Date de publication:
11 2020
11 2020
Historique:
received:
17
04
2020
accepted:
04
08
2020
entrez:
22
10
2020
pubmed:
23
10
2020
medline:
5
10
2021
Statut:
epublish
Résumé
In this observational study, we explored cortical structure as function of cortical depth through a laminar analysis of the T1/T2-weighted (T1w/T2w) ratio, which has been related to dendrite density in ex vivo brain tissue specimens of patients with MS. In 39 patients (22 relapsing-remitting, 13 female, age 41.1 ± 10.6 years; 17 progressive, 11 female, age 54.1 ± 9.9 years) and 21 healthy controls (8 female, , age 41.6 ± 10.6 years), we performed a voxel-wise analysis of T1w/T2w ratio maps from high-resolution 7T images from the subpial surface to the gray matter/white matter boundary. Six layers were sampled to ensure accuracy based on mean cortical thickness and image resolution. At the voxel-wise comparison ( Laminar analysis of T1w/T2w ratio mapping confirms the presence of cortical damage in MS and shows a variable expression of intracortical damage according to the disease phenotype. Although in the relapsing-remitting stage, only the subpial layer appears susceptible to damage, in progressive patients, widespread cortical abnormalities can be observed, not only, as described before, with regard to myelin/iron concentration but, possibly, to other microstructural features.
Identifiants
pubmed: 33087580
pii: 7/6/e900
doi: 10.1212/NXI.0000000000000900
pmc: PMC7641144
pii:
doi:
Types de publication
Journal Article
Observational Study
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
Références
Neuroimage. 2015 Jan 15;105:473-85
pubmed: 25449739
Ann Neurol. 2017 Oct;82(4):519-529
pubmed: 28833433
Neuroimage. 2006 Apr 1;30(2):436-43
pubmed: 16300968
JAMA Neurol. 2015 Dec;72(12):1466-74
pubmed: 26457955
Neuroimage. 2007 Oct 15;38(1):95-113
pubmed: 17761438
Ann Neurol. 2001 Sep;50(3):389-400
pubmed: 11558796
J Neurol Neurosurg Psychiatry. 2016 May;87(5):461-7
pubmed: 25926483
Brain. 2017 Nov 1;140(11):2912-2926
pubmed: 29053798
Brain Struct Funct. 2013 Mar;218(2):303-52
pubmed: 23076375
J Neurosci. 2013 Nov 20;33(47):18618-30
pubmed: 24259583
Sci Rep. 2017 Apr 21;7:46411
pubmed: 28429774
Nat Rev Neurosci. 2015 Mar;16(3):147-58
pubmed: 25697158
Ann Neurol. 2011 Feb;69(2):292-302
pubmed: 21387374
Neuroimage. 2019 Jan 15;185:27-34
pubmed: 30312809
Neuroimage. 2014 Jun;93 Pt 2:210-20
pubmed: 23603284
Mult Scler. 2020 Feb;26(2):177-187
pubmed: 31714181
J Neurosci. 2011 Aug 10;31(32):11597-616
pubmed: 21832190
Brain. 2016 Jan;139(Pt 1):39-46
pubmed: 26667278
Mult Scler. 2015 Apr;21(4):423-32
pubmed: 25145689
Neuroimage. 2013 Oct 15;80:105-24
pubmed: 23668970
Brain. 2018 Jun 1;141(6):1665-1677
pubmed: 29741648
J Neuroimaging. 2017 Sep;27(5):461-468
pubmed: 28464368
PLoS One. 2017 Apr 24;12(4):e0176519
pubmed: 28437430
Hum Brain Mapp. 2017 Apr;38(4):1780-1790
pubmed: 28009069
Brain. 2006 Apr;129(Pt 4):1031-9
pubmed: 16495327
AJNR Am J Neuroradiol. 2020 Mar;41(3):461-463
pubmed: 32139431
Nat Rev Neurol. 2015 Dec;11(12):711-24
pubmed: 26585978
Brain Struct Funct. 2017 Jan;222(1):465-480
pubmed: 27138385
Brain. 2015 Apr;138(Pt 4):932-45
pubmed: 25681411
Nature. 2016 Aug 11;536(7615):171-178
pubmed: 27437579
Eur Radiol. 2020 Aug;30(8):4586-4594
pubmed: 32211962
Lancet Neurol. 2018 Oct;17(10):870-884
pubmed: 30143361