Ethanol neurotoxicity is mediated by changes in expression, surface localization and functional properties of glutamate AMPA receptors.


Journal

Journal of neurochemistry
ISSN: 1471-4159
Titre abrégé: J Neurochem
Pays: England
ID NLM: 2985190R

Informations de publication

Date de publication:
06 2021
Historique:
revised: 13 10 2020
received: 20 02 2020
accepted: 19 10 2020
pubmed: 28 10 2020
medline: 25 8 2021
entrez: 27 10 2020
Statut: ppublish

Résumé

Modifications in the subunit composition of AMPA receptors (AMPARs) have been linked to the transition from physiological to pathological conditions in a number of contexts, including EtOH-induced neurotoxicity. Previous work from our laboratory showed that EtOH withdrawal causes CA1 pyramidal cell death in organotypic hippocampal slices and changes in the expression of AMPARs. Here, we investigated whether changes in expression and function of AMPARs may be causal for EtOH-induced neurotoxicity. To this aim, we examined the subunit composition, localization and function of AMPARs in hippocampal slices exposed to EtOH by using western blotting, surface expression assay, confocal microscopy and electrophysiology. We found that EtOH withdrawal specifically increases GluA1 protein signal in total homogenates, but not in the post-synaptic density-enriched fraction. This is suggestive of overall increase and redistribution of AMPARs to the extrasynaptic compartment. At functional level, AMPA-induced calcium influx was unexpectedly reduced, whereas AMPA-induced current was enhanced in CA1 pyramidal neurons following EtOH withdrawal, suggesting that increased AMPAR expression may lead to cell death because of elevated excitability, and not for a direct contribution on calcium influx. Finally, the neurotoxicity caused by EtOH withdrawal was attenuated by the non-selective AMPAR antagonist 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide disodium salt as well as by the selective antagonist of GluA2-lacking AMPARs 1-naphthyl acetyl spermine. We conclude that EtOH neurotoxicity involves changes in expression, surface localization and functional properties of AMPARs, and propose GluA2-lacking AMPARs as amenable specific targets for the development of neuroprotective drugs in EtOH-withdrawal syndrome.

Identifiants

pubmed: 33107046
doi: 10.1111/jnc.15223
doi:

Substances chimiques

Excitatory Amino Acid Antagonists 0
Receptors, AMPA 0
Ethanol 3K9958V90M
Glutamic Acid 3KX376GY7L

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2106-2118

Informations de copyright

© 2020 International Society for Neurochemistry.

Références

Acosta, G., Freidman, D. P., Grant, K. A., & Hemby, S. E. (2012). Alternative splicing of AMPA subunits in prefrontal cortical fields of Cynomolgus Monkeys following chronic ethanol self-administration. Frontiers in Psychiatry, 2. https://doi.org/10.3389/fpsyt.2011.00072
Anzai, T., Tsuzuki, K., Yamada, N., Hayashi, T., Iwakuma, M., Inada, K., Kameyama, K., Hoka, S., & Saji, M. (2003). Overexpression of Ca2+-permeable AMPA receptor promotes delayed cell death of hippocampal CA1 neurons /following transient forebrain ischemia. Neuroscience Research, 46, 41-51.
Caffino, L., Messa, G., & Fumagalli, F. (2018). A single cocaine administration alters dendritic spine morphology and impairs glutamate receptor synaptic retention in the medial prefrontal cortex of adolescent rats. Neuropharmacology, 140, 209-216. https://doi.org/10.1016/j.neuropharm.2018.08.006
Carbone, C., Costa, A., Provensi, G., Mannaioni, G., & Masi, A. (2017). The hyperpolarization-activated current determines synaptic excitability, calcium activity and specific viability of Substantia Nigra dopaminergic neurons. Frontiers in Cellular Neuroscience, 28(11), 187. https://doi.org/10.3389/fncel.2017.00187
Chen, L., Chetkovich, D. M., Petralia, R. S., Sweeney, N. T., Kawasaki, Y., Wenthold, R. J., Bredt, D. S., & Nicoll, R. A. (2000). Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature, 408, 936-943. https://doi.org/10.1038/35050030
Daw, M. I., Chittajallu, R., Bortolotto, Z. A., Dev, K. K., Duprat, F., Henley, J. M., Collingridge, G. L., & Isaac, J. T. R. (2000). PDZ proteins interacting with C-terminal GluR2/3 are involved in a PKC-dependent regulation of AMPA receptors at hippocampal synapses. Neuron, 28, 873-886. https://doi.org/10.1016/S0896-6273(00)00160-4
DeSouza, S., Fu, J., States, B. A., & Ziff, E. B. (2002). Differential palmitoylation directs the AMPA receptor-binding protein ABP to spines or to intracellular clusters. Journal of Neuroscience, 22, 3493-3503. https://doi.org/10.1523/JNEUROSCI.22-09-03493.2002
Fumagalli F., Frasca A., Racagni G. and Riva M. A. (2008) Dynamic Regulation of Glutamatergic Postsynaptic Activity in Rat Prefrontal Cortex by Repeated Administration of Antipsychotic Drugs. Mol Pharmacol 73, 1484-1490.
Gerace, E., Landucci, E., Bani, D., Moroni, F., Mannaioni, G., & Pellegrini-Giampietro, D. E. (2019). Glutamate receptor-mediated neurotoxicity in a model of ethanol dependence and withdrawal in rat organotypic hippocampal slice cultures. Frontiers in Neuroscience, 12, 1053.
Gerace, E., Landucci, E., Scartabelli, T., Moroni, F., Chiarugi, A., & Pellegrini-Giampietro, D. E. (2015). Interplay between histone acetylation/deacetylation and poly(ADP-ribosyl)ation in the development of ischemic tolerance in vitro. Neuropharmacology, 92, 125-134.
Gerace, E., Landucci, E., Scartabelli, T., Moroni, F., & Pellegrini-Giampietro, D. E. (2012). Rat hippocampal slice culture models for the evaluation of neuroprotective agents. Methods in Molecular Biology, 846, 343-354.
Gerace, E., Landucci, E., Totti, A., Bani, D., Guasti, D., Baronti, R., Moroni, F., Mannaioni, G., & Pellegrini-Giampietro, D. E. (2016). Ethanol toxicity during brain development: alterations of excitatory synaptic transmission in immature organotypic hippocampal slice cultures. Alcoholism, Clinical and Experimental Research, 40, 706-716. https://doi.org/10.1111/acer.13006
Gerace, E., Masi, A., Resta, F., Felici, R., Landucci, E., Mello, T., Pellegrini-Giampietro, D. E., Mannaioni, G., & Moroni, F. (2014). PARP-1 activation causes neuronal death in the hippocampal CA1 region by increasing the expression of Ca2+-permeable AMPA receptors. Neurobiology of Diseases, 70, 43-52. https://doi.org/10.1016/j.nbd.2014.05.023
Hideyama, T., & Kwak, S. (2011). When Does ALS Start? ADAR2?GluA2 Hypothesis for the Etiology of Sporadic ALS. Frontiers in Molecular Neuroscience, 4, 33.
Howard, M. A., Elias, G. M., Elias, L. A. B., Swat, W., & Nicoll, R. A. (2010). The role of SAP97 in synaptic glutamate receptor dynamics. Proceedings of the National Academy of Sciences, 107, 3805-3810.
Ivanova, V. O., Balaban, P. M., & Bal, N. V. (2020). Modulation of AMPA receptors by nitric oxide in nerve cells. International Journal of Molecular Sciences, 21, 981. https://doi.org/10.3390/ijms21030981
Jin, Z., Bhandage, A. K., Bazov, I., Kononenko, O., Bakalkin, G., Korpi, E. R., & Birnir, B. (2014). Selective increases of AMPA, NMDA, and kainate receptor subunit mRNAs in the hippocampus and orbitofrontal cortex but not in prefrontal cortex of human alcoholics. Frontiers in Cellular Neuroscience, 8, 11.
Läck, A. K., Diaz, M. R., Chappell, A., DuBois, D. W., & McCool, B. A. (2007). Chronic ethanol and withdrawal differentially modulate pre- and postsynaptic function at glutamatergic synapses in rat basolateral amygdala. Journal of Neurophysiology, 98, 3185-3196. https://doi.org/10.1152/jn.00189.2007
Lana, D., Melani, A., Pugliese, A. M., Cipriani, S., Nosi, D., Pedata, F., & Giovannini, M. G. (2014). The neuron-astrocyte-microglia triad in a rat model of chronic cerebral hypoperfusion: protective effect of dipyridamole. Frontiers in Aging Neuroscience, 6, 322.
Landucci, E., Filippi, L., Gerace, E., Catarzi, S., Guerrini, R., & Pellegrini-Giampietro, D. E. (2018). Neuroprotective effects of topiramate and memantine in combination with hypothermia in hypoxic-ischemic brain injury in vitro and in vivo. Neuroscience Letters, 668, 103-107. https://doi.org/10.1016/j.neulet.2018.01.023
Lapucci, A., Cavone, L., Buonvicino, D., Felici, R., Gerace, E., Zwergel, C., Valente, S., Mai, A., & Chiarugi, A. (2017). Effect of Class II HDAC inhibition on glutamate transporter expression and survival in SOD1-ALS mice. Neuroscience Letters, 656, 120-125.
Leonard, A. S., Davare, M. A., Horne, M. C., Garner, C. C., & Hell, J. W. (1998). SAP97 is associated with the α-amino-3-hydroxy-5-methylisoxazole-4- propionic acid receptor GluR1 subunit. Journal of Biological Chemistry, 273, 19518-19524.
Leonoudakis, D., Zhao, P., & Beattie, E. C. (2008). Rapid tumor necrosis factor -induced exocytosis of glutamate receptor 2-lacking AMPA receptors to extrasynaptic plasma membrane potentiates excitotoxicity. Journal of Neuroscience, 28, 2119-2130.
Li, J., Kang, S., Fu, R., Wu, L., Wu, W., Liu, H., Gregor, D., Zuo, W., Bekker, A., & Ye, J.-H. (2017). Inhibition of AMPA receptor and CaMKII activity in the lateral habenula reduces depressive-like behavior and alcohol intake in rats. Neuropharmacology, 126, 108-120. https://doi.org/10.1016/j.neuropharm.2017.08.035
Llorente, I. L., Landucci, E., Pellegrini-Giampietro, D. E., & Fernández-López, A. (2015). Glutamate receptor and transporter modifications in rat organotypic hippocampal slice cultures exposed to oxygen-glucose deprivation: The contribution of cyclooxygenase-2. Neuroscience, 292, 118-128. https://doi.org/10.1016/j.neuroscience.2015.02.040
MacGillavry, H. D., Kerr, J. M., & Blanpied, T. A. (2011). Lateral organization of the postsynaptic density. Molecular and Cellular Neurosciences, 48, 321-331.
Mameli, M., Bellone, C., Brown, M. T. C., & Lüscher, C. (2011). Cocaine inverts rules for synaptic plasticity of glutamate transmission in the ventral tegmental area. Nature Neuroscience, 14, 414-416.
Marty, V. N., & Spigelman, I. (2012). Long-lasting alterations in membrane properties, K+ currents, and glutamatergic synaptic currents of nucleus accumbens medium spiny neurons in a rat model of alcohol dependence. Frontiers in Neuroscience, 6, 86.
Mills, F., Globa, A. K., Liu, S., Cowan, C. M., Mobasser, M., Phillips, A. G., Borgland, S. L., & Bamji, S. X. (2017). Cadherins mediate cocaine-induced synaptic plasticity and behavioral conditioning. Nature Neuroscience, 20, 540-549.
Newpher, T. M., & Ehlers, M. D. (2008). Glutamate receptor dynamics in dendritic microdomains. Neuron, 58, 472-497. https://doi.org/10.1016/j.neuron.2008.04.030
Noh, K.-M., Hwang, J.-Y., Follenzi, A., Athanasiadou, R., Miyawaki, T., Greally, J. M., Bennett, M. V. L., & Zukin, R. S. (2012). Repressor element-1 silencing transcription factor (REST)-dependent epigenetic remodeling is critical to ischemia-induced neuronal death. Proceedings of the National Academy of Sciences, 109, E962-E971.
Pascoli, V., Terrier, J., Espallergues, J., Valjent, E., O’Connor, E. C., & Lüscher, C. (2014). Contrasting forms of cocaine-evoked plasticity control components of relapse. Nature, 509, 459-464. https://doi.org/10.1038/nature13257
Pellegrini-Giampietro, D. (1997). The GluR2 (GluR-B) hypothesis: Ca2+-permeable AMPA receptors in neurological disorders. Trends in Neurosciences, 20, 464-470. https://doi.org/10.1016/S0166-2236(97)01100-4
Pellegrini-Giampietro, D. E., Peruginelli, F., Meli, E., Cozzi, A., Albani-Torregrossa, S., Pellicciari, R., & Moroni, F. (1999). Protection with metabotropic glutamate 1 receptor antagonists in models of ischemic neuronal death: Time-course and mechanisms. Neuropharmacology, 38, 1607-1619. https://doi.org/10.1016/S0028-3908(99)00097-0
Perez, J. L., Khatri, L., Chang, C., Srivastava, S., Osten, P., & Ziff, E. B. (2001). PICK1 targets activated protein kinase Cα to AMPA receptor clusters in spines of hippocampal neurons and reduces surface levels of the AMPA-type glutamate receptor subunit 2. Journal of Neuroscience, 21, 5417-5428. https://doi.org/10.1523/JNEUROSCI.21-15-05417.2001
Saglietti, L., Dequidt, C., Kamieniarz, K., Rousset, M.-C., Valnegri, P., Thoumine, O., Beretta, F., Fagni, L., Choquet, D., Sala, C., Sheng, M., & Passafaro, M. (2007). Extracellular interactions between GluR2 and N-cadherin in spine regulation. Neuron, 54, 461-477. https://doi.org/10.1016/j.neuron.2007.04.012
Seidenman, K. J., Steinberg, J. P., Huganir, R., & Malinow, R. (2003). Glutamate receptor subunit 2 serine 880 phosphorylation modulates synaptic transmission and mediates plasticity in CA1 pyramidal cells. Journal of Neuroscience, 23, 9220-9228. https://doi.org/10.1523/JNEUROSCI.23-27-09220.2003
Shankar, G. M., Li, S., Mehta, T. H., Garcia-Munoz, A., Shepardson, N. E., Smith, I., Brett, F. M. et al (2008). Amyloid-β protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nature Medicine, 14, 837-842.
Swanson, G. T., Kamboj, S. K., & Cull-Candy, S. G. (1997). Single-channel properties of recombinant AMPA receptors depend on RNA editing, splice variation, and subunit composition. Journal of Neuroscience, 17(1), 58-69. https://doi.org/10.1523/JNEUROSCI.17-01-00058.1997
Tai, C.-Y., Kim, S. A., & Schuman, E. M. (2008). Cadherins and synaptic plasticity. Current Opinion in Cell Biology, 20, 567-575.
Wang, J., Hamida, S., Ben, D. E., Zhu, W., Gibb, S. L., Lanfranco, M. F., Carnicella, S., & Ron, D. (2012). Ethanol-mediated facilitation of AMPA receptor function in the dorsomedial striatum: Implications for alcohol drinking behavior. Journal of Neuroscience, 32, 15124-15132. https://doi.org/10.1523/JNEUROSCI.2783-12.2012

Auteurs

Elisabetta Gerace (E)

Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy.

Alice Ilari (A)

Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy.
School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy.

Lucia Caffino (L)

Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy.

Daniela Buonvicino (D)

Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.

Daniele Lana (D)

Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.

Filippo Ugolini (F)

Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.

Francesco Resta (F)

European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy.
Department of Physics and Astronomy, University of Florence, Florence, Italy.

Daniele Nosi (D)

Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.

Maria Grazia Giovannini (M)

Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.

Roberto Ciccocioppo (R)

School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy.

Fabio Fumagalli (F)

Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy.

Domenico E Pellegrini-Giampietro (DE)

Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.

Alessio Masi (A)

Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy.

Guido Mannaioni (G)

Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH