Endothelial dysfunction and cardiovascular risk in lupus nephritis: New roles for old players?
endothelial dysfunction
lupus erythematous
nephritis
Journal
European journal of clinical investigation
ISSN: 1365-2362
Titre abrégé: Eur J Clin Invest
Pays: England
ID NLM: 0245331
Informations de publication
Date de publication:
Feb 2021
Feb 2021
Historique:
received:
11
09
2020
revised:
23
10
2020
accepted:
28
10
2020
pubmed:
1
11
2020
medline:
4
11
2021
entrez:
31
10
2020
Statut:
ppublish
Résumé
In systemic lupus erythematosus (SLE) patients, most of the clinical manifestation share a vascular component triggered by endothelial dysfunction. Endothelial cells (ECs) activation occurs both on the arterial and venous side, and the high vascular density of kidneys accounts for the detrimental outcomes of SLE through lupus nephritis (LN). Kidney damage, in turn, exerts a negative feedback on the cardiovascular (CV) system aggravating risk factors for CV diseases such as hypertension, stroke and coronary syndrome among others. Despite the intensive investigation on SLE and LN, the role of endothelial dysfunction, as well as the underlying mechanisms, remains to be fully understood, with no specifically targeted pharmacological treatment. It is not known, in fact, if the activation pathway(s) in venous ECs are similar to the one in arterial ECs and doubts persist on the shared manifestation of microcirculation compared to macrocirculation. In this work, we aim to review the recent literature about the role of endothelial activation and dysfunction in the development of CV complications in SLE and LN patients. We, therefore, focus on arteriovenous similarities and differences and on specific pathways of great vessels compared to capillaries. Critically summarising the available data is of pivotal importance for both basic researchers and clinicians in order to develop and test new pharmacological approaches in the treatment of basic components of SLE and LN.
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
e13441Subventions
Organisme : Italian Ministry of Health
ID : SG-2018-12368028
Organisme : Fondo Ex60%
Organisme : Fondo Finanziamento delle Attivita Base di Ricerca
Informations de copyright
© 2020 Stichting European Society for Clinical Investigation Journal Foundation. Published by John Wiley & Sons Ltd.
Références
Ballocca F, D'Ascenzo F, Moretti C, et al. Predictors of cardiovascular events in patients with systemic lupus erythematosus (SLE): a systematic review and meta-analysis. Eur J Prev Cardiol. 2015;22(11):1435-1441. https://doi.org/10.1177/2047487314546826
Gu M-M, Wang X-P, Cheng Q-Y, et al. A meta-analysis of cardiovascular events in systemic lupus erythematosus. Immunol Invest. 2019;48:505-520. https://doi.org/10.1080/08820139.2019.1567534
Sciascia S, Sanna G, Khamashta MA, et al. The estimated frequency of antiphospholipid antibodies in young adults with cerebrovascular events: a systematic review. Ann Rheum Dis. 2015;74(11):2028-2033. https://doi.org/10.1136/annrheumdis-2014-205663
Kostopoulou M, Nikolopoulos D, Parodis I, Bertsias G. Cardiovascular Disease in Systemic Lupus Erythematosus: recent data on epidemiology, risk factors and prevention. Curr Vasc Pharmacol. 2019;18(6):549-565. https://doi.org/10.2174/1570161118666191227101636
Moran AE, Forouzanfar MH, Roth GA, et al. The global burden of ischemic heart disease in 1990 and 2010. Circulation. 2014;129(14):1493-1501. https://doi.org/10.1161/CIRCULATIONAHA.113.004046
Gustafsson JT, Herlitz Lindberg M, Gunnarsson I, et al. Excess atherosclerosis in systemic lupus erythematosus - a matter of renal involvement: case control study of 281 SLE patients and 281 individually matched population controls. PLoS One. 2017;12(4):e0174572. https://doi.org/10.1371/journal.pone.0174572
Hermansen ML, Lindhardsen J, Torp-Pedersen C, Faurschou M, Jacobsen S. The risk of cardiovascular morbidity and cardiovascular mortality in systemic lupus erythematosus and lupus nephritis: a Danish nationwide population-based cohort study. Rheumatology (United Kingdom). 2017;56(5):709-715. https://doi.org/10.1093/rheumatology/kew475
Wells DK, Ward MM. Nephritis and the risk of acute myocardial infarction in patients with systemic lupus erythematosus. Clin Exp Rheumatol. 2010;28(3):223-229.
Reppe Moe SE, Molberg SEH, Lerang K. Assessing the relative impact of lupus nephritis on mortality in a population-based systemic lupus erythematosus cohort. Lupus. 2019;28(7):818-825. https://doi.org/10.1177/0961203319847275
Sun EY, Alvarez C, Sheikh SZ. Association of lupus nephritis with coronary artery disease by ISN/RPS classification: results from a large real-world lupus population. ACR Open Rheumatol. 2019;1:244-250. https://doi.org/10.1002/acr2.1035
Sciascia S, Baldovino S, Schreiber K, et al. Thrombotic risk assessment in antiphospholipid syndrome: the role of new antibody specificities and thrombin generation assay. Clin Mol Allergy. 2016;14(1):6. https://doi.org/10.1186/s12948-016-0043-2
Fouli GE, Gnudi L. The future: Experimental therapies for renal disease in diabetes. Nephron. 2019;143(1):3-7. https://doi.org/10.1159/000492825
Sahebkar A, Morris DR, Biros E, Golledge J. Association of single nucleotide polymorphisms in the gene encoding platelet endothelial cell adhesion molecule-1 with the risk of myocardial infarction: a systematic review and meta-analysis. Thromb Res. 2013;132(2):227-233. https://doi.org/10.1016/j.thromres.2013.07.007
Wang L, Ge H, Peng L, Wang B. A meta-analysis of the relationship between VEGFR2 polymorphisms and atherosclerotic cardiovascular diseases. Clin Cardiol. 2019;42(10):860-865. https://doi.org/10.1002/clc.23233
da Rosa Franchi Santos LF, Stadtlober NP, Costa Dall'Aqua LG, et al. Increased adhesion molecule levels in systemic lupus erythematosus: relationships with severity of illness, autoimmunity, metabolic syndrome and cortisol levels. Lupus. 2018;27(3):380-388. https://doi.org/10.1177/0961203317723716
Hrycek A, Janowska J, Cieślik P. Selected angiogenic cytokines in systemic lupus erythematosus patients. Autoimmunity. 2009;42(5):459-466. https://doi.org/10.1080/08916930902960339
Lee WF, Wu CY, Yang HY, et al. Biomarkers associating endothelial dysregulation in pediatric-onset systemic lupus erythematous. Pediatr Rheumatol. 2019;17(1):69. https://doi.org/10.1186/s12969-019-0369-7
Bouillet L, Baudet AE, Deroux A, et al. Auto-antibodies to vascular endothelial cadherin in humans: association with autoimmune diseases. Lab Investig. 2013;93(11):1194-1202. https://doi.org/10.1038/labinvest.2013.106
Loof T, Krämer S, Gaedeke J, Neumayer HH, Peters H. IL-17 expression in the time course of acute anti-thy1 glomerulonephritis. PLoS One. 2016;11(5):e0156480. https://doi.org/10.1371/journal.pone.0156480
Teramoto K, Negoro N, Kitamoto K, et al. Microarray analysis of glomerular gene expression in murine lupus nephritis. J Pharmacol Sci. 2008;106(1):56-67. https://doi.org/10.1254/jphs.FP0071337
Ding H, Lin C, Cai J, et al. Urinary activated leukocyte cell adhesion molecule as a novel biomarker of lupus nephritis histology. Arthritis Res Ther. 2020;22(1):122. https://doi.org/10.1186/s13075-020-02209-9
Parodis I, Gokaraju S, Zickert A, et al. ALCAM and VCAM-1 as urine biomarkers of activity and long-term renal outcome in systemic lupus erythematosus. Rheumatology (Oxford). 2020;59(9):2237-2249. https://doi.org/10.1093/rheumatology/kez528
Atehortúa L, Rojas M, Vásquez G, et al. Endothelial activation and injury by microparticles in patients with systemic lupus erythematosus and rheumatoid arthritis. Arthritis Res Ther. 2019;21:34. https://doi.org/10.1186/s13075-018-1796-4
Carvalho JF, Blank M, Shoenfeld Y. Vascular endothelial growth factor (VEGF) in autoimmune diseases. J Clin Immunol. 2007;27(3):246-256. https://doi.org/10.1007/s10875-007-9083-1
Watanabe H, Mamelak AJ, Weiss E, et al. Anti-vascular endothelial growth factor receptor-2 antibody accelerates renal disease in the NZB/W F1 murine systemic lupus erythematosus model [2]. Clin Cancer Res. 2005;11(1):407-409.
Vazgiourakis VM, Zervou MI, Eliopoulos E, et al. Implication of VEGFR2 in systemic lupus erythematosus: a combined genetic and structural biological approach. Clin Exp Rheumatol. 2013;31(1):97-102. https://doi.org/10.1136/annrheumdis-2012-eular.14
Altaany Z, Moccia F, Munaron L, Mancardi D, Wang R. Hydrogen sulfide and endothelial dysfunction: relationship with nitric oxide. Curr Med Chem. 2014;21(32):3646-3661. https://doi.org/10.2174/0929867321666140706142930
Stark RJ, Koch SR, Choi H, et al. Endothelial nitric oxide synthase modulates Toll-like receptor 4-mediated IL-6 production and permeability via nitric oxide-independent signaling. FASEB J. 2018;32(2):945-956. https://doi.org/10.1096/fj.201700410R
Toral M, Robles-Vera I, Romero M, et al. Lactobacillus fermentum CECT5716: a novel alternative for the prevention of vascular disorders in a mouse model of systemic lupus erythematosus. FASEB J. 2019;33(9):10005-10018. https://doi.org/10.1096/fj.201900545RR
Jones Buie JN, Jenkins DP, Muise-Helmericks R, Oates JC. L-sepiapterin restores SLE serum-induced markers of endothelial function in endothelial cells. Lupus Sci Med. 2019;6(1):e000294. https://doi.org/10.1136/lupus-2018-000294
Zhu J, Wang Z, Song G, Zhang T, Wang L, Wu F. The association of endothelial nitric oxide synthase gene single nucleotide polymorphisms with paediatric systemic lupus erythematosus. Clin Exp Rheumatol. 2018;36(3):508-512.
Katkam SK, Indumathi B, Tasneem FSD, Rajasekhar L, Kutala VK. Impact of eNOS 27-bp VNTR (4b/a) gene polymorphism with the risk of Systemic Lupus Erythematosus in south Indian subjects. Gene. 2018;658:105-112. https://doi.org/10.1016/j.gene.2018.03.021
Valer P, Paul B, Eugenia B, Camelia B. Annexin A5 as independent predictive biomarker for subclinical atherosclerosis and endothelial dysfunction in systemic lupus erythematosus patients. Clin Lab. 2013;59(3):359-367. https://doi.org/10.7754/Clin.Lab.2012.120521
Schreiber K, Sciascia S, De Groot PG, et al. Antiphospholipid syndrome. Nat Rev Dis Prim. 2018;4:18005. https://doi.org/10.1038/nrdp.2017.103
Sciascia S, Cuadrado MJ, Khamashta M, Roccatello D. Renal involvement in antiphospholipid syndrome. Nat Rev Nephrol. 2014;10(5):279-289. https://doi.org/10.1038/nrneph.2014.38
Sciascia S, Yazdany J, Dall'Era M, et al. Anticoagulation in patients with concomitant lupus nephritis and thrombotic microangiopathy: a multicentre cohort study. Ann Rheum Dis. 2019;78(7):1004-1006. https://doi.org/10.1136/annrheumdis-2018-214559
Pardanaud L, Pibouin-Fragner L, Dubrac A, et al. Sympathetic innervation promotes arterial fate by enhancing endothelial ERK activity. Circ Res. 2016;119(5):607-620. https://doi.org/10.1161/CIRCRESAHA.116.308473
Wang HU, Chen ZF, Anderson DJ. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell. 1998;93(5):741-753. https://doi.org/10.1016/S0092-8674(00)81436-1
Mukouyama YS, Gerber HP, Ferrara N, Gu C, Anderson DJ. Peripheral nerve-derived VEGF promotes arterial differentiation via neuropilin 1-mediated positive feedback. Development. 2005;132(5):941-952. https://doi.org/10.1242/dev.01675
Marcelo KL, Goldie LC, Hirschi KK. Regulation of endothelial cell differentiation and specification. Circ Res. 2013;112(9):1272-1287. https://doi.org/10.1161/CIRCRESAHA.113.300506
Corada M, Morini MF, Dejana E. Signaling pathways in the specification of arteries and veins. Arterioscler Thromb Vasc Biol. 2014;34(11):2372-2377. https://doi.org/10.1161/ATVBAHA.114.303218
Ogawa K, Wada H, Okada N, et al. EphB2 and ephrin-B1 expressed in the adult kidney regulate the cytoarchitecture of medullary tubule cells through Rho family GTPases. J Cell Sci. 2006;119(3):559-570. https://doi.org/10.1242/jcs.02777
Andres AC, Munarini N, Djonov V, et al. EphB4 receptor tyrosine kinase transgenic mice develop glomerulopathies reminiscent of aglomerular vascular shunts. Mech Dev. 2003;120(4):511-516. https://doi.org/10.1016/S0925-4773(02)00461-6
Wnuk M, Hlushchuk R, Janot M, et al. Podocyte EphB4 signaling helps recovery from glomerular injury. Kidney Int. 2012;81(12):1212-1225. https://doi.org/10.1038/ki.2012.17
You LR, Lin FJ, Lee CT, DeMayo FJ, Tsai MJ, Tsai SY. Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature. 2005;435(7038):98-104. https://doi.org/10.1038/nature03511
Aranguren XL, Beerens M, Coppiello G, et al. COUP-TFII orchestrates venous and lymphatic endothelial identity by homo- or hetero-dimerisation with PROX1. J Cell Sci. 2013;126(5):1164-1175. https://doi.org/10.1242/jcs.116293
Chen X, Qin J, Cheng CM, Tsai MJ, Tsai SY. COUP-TFII is a major regulator of cell cycle and notch signaling pathways. Mol Endocrinol. 2012;26(8):1268-1277. https://doi.org/10.1210/me.2011-1305
Cui X, Lu YW, Lee V, et al. Venous endothelial marker COUP-TFII regulates the distinct pathologic potentials of adult arteries and veins. Sci Rep. 2015;5:16193. https://doi.org/10.1038/srep16193
Kino T, De Martino MU, Charmandari E, Mirani M, Chrousos GP. Tissue glucocorticoid resistance/hypersensitivity syndromes. J Steroid Biochem Mol Biol. 2003;85(2-5):457-467. https://doi.org/10.1016/S0960-0760(03)00218-8
Sansilvestri-Morel P, Rupin A, Jaisson S, Fabiani JN, Verbeuren TJ, Vanhoutte PM. Synthesis of collagen is dysregulated in cultured fibroblasts derived from skin of subjects with varicose veins as it is in venous smooth muscle cells. Circulation. 2002;106(4):479-483. https://doi.org/10.1161/01.CIR.0000022846.22923.46
Kalogeris TJ, Kevil CG, Laroux FS, Coe LL, Phifer TJ, Alexander JS. Differential monocyte adhesion and adhesion molecule expression in venous and arterial endothelial cells. Am J Physiol - Lung Cell Mol Physiol. 1999;276(1):L9-L19. https://doi.org/10.1152/ajplung.1999.276.1.L9
Zakkar M, Luong LA, Chaudhury H, et al. Dexamethasone arterializes venous endothelial cells by inducing mitogen-activated protein kinase phosphatase-1: a novel antiinflammatory treatment for vein grafts? Circulation. 2011;123(5):524-532. https://doi.org/10.1161/CIRCULATIONAHA.110.979542
Liu X, Zhang GX, Zhang XY, et al. Lacidipine improves endothelial repair capacity of endothelial progenitor cells from patients with essential hypertension. Int J Cardiol. 2013;168(4):3317-3326. https://doi.org/10.1016/j.ijcard.2013.04.041
Tsai NW, Hung SH, Huang CR, et al. The association between circulating endothelial progenitor cells and outcome in different subtypes of acute ischemic stroke. Clin Chim Acta. 2014;427:6-10. https://doi.org/10.1016/j.cca.2013.09.029
Moonen JRAJ, de Leeuw K, van Seijen XJGY, et al. Reduced number and impaired function of circulating progenitor cells in patients with systemic lupus erythematosus. Arthritis Res Ther. 2007;9(4):R84. https://doi.org/10.1186/ar2283
Kuwana M, Okazaki Y. Quantification of circulating endothelial progenitor cells in systemic sclerosis: a direct comparison of protocols. Ann Rheum Dis. 2012;71(4):617-620. https://doi.org/10.1136/annrheumdis-2011-200713
Tepperman E, Ramzy D, Prodger J, et al. Surgical biology for the clinician: vascular effects of immunosuppression. Can J Surg. 2010;53:57-63.
Gómez-Guzmán M, Jiménez R, Romero M, et al. Chronic hydroxychloroquine improves endothelial dysfunction and protects kidney in a mouse model of systemic lupus erythematosus. Hypertension. 2014;64(2):330-337. https://doi.org/10.1161/HYPERTENSIONAHA.114.03587
Virdis A, Tani C, Duranti E, et al. Early treatment with hydroxychloroquine prevents the development of endothelial dysfunction in a murine model of systemic lupus erythematosus. Arthritis Res Ther. 2015;17:277. https://doi.org/10.1186/s13075-015-0790-3
Pérez-Sánchez C, Cecchi I, Barbarroja N, et al. Early restoration of immune and vascular phenotypes in systemic lupus erythematosus and rheumatoid arthritis patients after B cell depletion. J Cell Mol Med. 2019;23(9):6308-6318. https://doi.org/10.1111/jcmm.14517
Romero M, Toral M, Robles-Vera I, et al. Activation of peroxisome proliferator activator receptor β/δ improves endothelial dysfunction and protects kidney in murine lupus. Hypertension. 2017;69(4):641-650. https://doi.org/10.1161/HYPERTENSIONAHA.116.08655
Burg N, Swendeman S, Worgall S, Hla T, Salmon JE. Sphingosine 1-phosphate receptor 1 signaling maintains endothelial cell barrier function and protects against immune complex-induced vascular injury. Arthritis Rheumatol. 2018;70(11):1879-1889. https://doi.org/10.1002/art.40558
Lan Q, Fan H, Quesniaux V, Ryffel B, Liu Z, Zheng SG. Induced Foxp3 + regulatory T cells: a potential new weapon to treat autoimmune and inflammatory diseases? J Mol Cell Biol. 2012;4(1):22-28. https://doi.org/10.1093/jmcb/mjr039
Zhong H, Liu Y, Xu Z, et al. TGF-β-induced CD8+CD103+ regulatory T cells show potent therapeutic effect on chronic graft-versus-host disease lupus by suppressing B cells. Front Immunol. 2018:9-35. https://doi.org/10.3389/fimmu.2018.00035
Gu J, Lu L, Chen M, et al. TGF-β-induced CD4 + Foxp3 + T cells attenuate acute graft-versus-host disease by suppressing expansion and killing of effector CD8 + cells. J Immunol. 2014;193(7):3388-3397. https://doi.org/10.4049/jimmunol.1400207
Liu Y, Lan Q, Lu L, et al. Phenotypic and functional characteristic of a newly identified CD8 +Foxp3-CD103+ regulatory T cells. J Mol Cell Biol. 2014;6(1):81-92. https://doi.org/10.1093/jmcb/mjt026
Rashad NM, El-Shabrawy RM, Said D, El-Shabrawy SM, Emad G. Serum levels of transforming growth factor beta-1 (TGF-β1) as an early no invasive marker for diagnosis of lupus nephritis in systemic lupus erythematosus patients. Egypt J Immunol. 2019;26:31-42.
Choi EW, Song JW, Ha N, Il CY, Kim S. CKD-506, a novel HDAC6-selective inhibitor, improves renal outcomes and survival in a mouse model of systemic lupus erythematosus. Sci Rep. 2018;8(1):17297. https://doi.org/10.1038/s41598-018-35602-1
Regna NL, Vieson MD, Luo XM, et al. Specific HDAC6 inhibition by ACY-738 reduces SLE pathogenesis in NZB/W mice. Clin Immunol. 2016;162:58-73. https://doi.org/10.1016/j.clim.2015.11.007
Horwitz DA, Bickerton S, Koss M, Fahmy TM, La Cava A. Suppression of murine lupus by CD4+ and CD8+ Treg cells induced by T cell-targeted nanoparticles loaded with interleukin-2 and transforming growth factor β. Arthritis Rheumatol. 2019;71(4):632-640. https://doi.org/10.1002/art.40773
Rothlin CV, Lemke G. TAM receptor signaling and autoimmune disease. Curr Opin Immunol. 2010;22(6):740-746. https://doi.org/10.1016/j.coi.2010.10.001
Zhen Y, Finkelman FD, Shao WH. Mechanism of Mer receptor tyrosine kinase inhibition of glomerular endothelial cell inflammation. J Leukoc Biol. 2018;103(4):709-717. https://doi.org/10.1002/JLB.3A0917-368R
Cohen PL, Shao WH. Gas6/TAM receptors in systemic lupus erythematosus. Dis Markers. 2019;2019:1-9. https://doi.org/10.1155/2019/7838195
Zhen Y, Priest SO, Shao W-H. Opposing roles of tyrosine kinase receptors Mer and Axl determine clinical outcomes in experimental immune-mediated nephritis. J Immunol. 2016;197(6):2187-2194. https://doi.org/10.4049/jimmunol.1600793
Gong S, Xu Z, Liu Y, et al. Plasma sMer, sAxl and GAS6 levels correlate with disease activity and severity in lupus nephritis. Eur J Clin Invest. 2019;49(3):e13064. https://doi.org/10.1111/eci.13064
Yanagita M, Ishimoto Y, Arai H, et al. Essential role of Gas6 for glomerular injury in nephrotoxic nephritis. J Clin Invest. 2002;110(2):239-246. https://doi.org/10.1172/JCI0214861
Anderson HA, Maylock CA, Williams JA, Paweletz CP, Shu H, Shacter E. Serum-derived protein S binds to phosphatidylserine and stimulates the phagocytosis of apoptotic cells. Nat Immunol. 2003;4(1):87-91. https://doi.org/10.1038/ni871
CarreraSilva EA, Chan PY, Joannas L, et al. T cell-derived protein S engages TAM receptor signaling in dendritic cells to control the magnitude of the immune response. Immunity. 2013;39(1):160-170. https://doi.org/10.1016/j.immuni.2013.06.010
Hlushchuk R, Styp-Rekowska B, Dzambazi J, et al. Endoglin inhibition leads to intussusceptive angiogenesis via activation of factors related to COUP-TFII signaling pathway. PLoS One. 2017;12(8):e0182813. https://doi.org/10.1371/journal.pone.0182813
Suzuki T, Moriya T, Darnel AD, Takeyama J, Sasano H. Immunohistochemical distribution of chicken ovalbumin upstream promoter transcription factor II in human tissues. Mol Cell Endocrinol. 2000;164(1-2):69-75. https://doi.org/10.1016/S0303-7207(00)00242-2
Wu X, Zou Y, Liang Y, et al. COUP-TFII switches responses of venous endothelium to atherosclerotic factors through controlling the profile of various inherent genes expression. J Cell Biochem. 2011;112(1):256-264. https://doi.org/10.1002/jcb.22923
Virani SS, Alonso A, Benjamin EJ, et al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141(9):e139-e596. https://doi.org/10.1161/CIR.0000000000000757