Therapeutic Options in Hereditary Optic Neuropathies.
Journal
Drugs
ISSN: 1179-1950
Titre abrégé: Drugs
Pays: New Zealand
ID NLM: 7600076
Informations de publication
Date de publication:
Jan 2021
Jan 2021
Historique:
pubmed:
8
11
2020
medline:
26
10
2021
entrez:
7
11
2020
Statut:
ppublish
Résumé
Options for the effective treatment of hereditary optic neuropathies have been a long time coming. The successful launch of the antioxidant idebenone for Leber's Hereditary Optic Neuropathy (LHON), followed by its introduction into clinical practice across Europe, was an important step forward. Nevertheless, other options, especially for a variety of mitochondrial optic neuropathies such as dominant optic atrophy (DOA), are needed, and a number of pharmaceutical agents, acting on different molecular pathways, are currently under development. These include gene therapy, which has reached Phase III development for LHON, but is expected to be developed also for DOA, whilst most of the other agents (other antioxidants, anti-apoptotic drugs, activators of mitobiogenesis, etc.) are almost all at Phase II or at preclinical stage of research. Here, we review proposed target mechanisms, preclinical evidence, available clinical trials with primary endpoints and results, of a wide range of tested molecules, to give an overview of the field, also providing the landscape of future scenarios, including gene therapy, gene editing, and reproductive options to prevent transmission of mitochondrial DNA mutations.
Identifiants
pubmed: 33159657
doi: 10.1007/s40265-020-01428-3
pii: 10.1007/s40265-020-01428-3
pmc: PMC7843467
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
57-86Références
Carelli V, Ross-Cisneros FN, Sadun AA. Mitochondrial dysfunction as a cause of optic neuropathies. Prog Retin Eye Res. 2004;23(1):53–89.
pubmed: 14766317
Yu-Wai-Man P, Griffiths PG, Chinnery PF. Mitochondrial optic neuropathies—disease mechanisms and therapeutic strategies. Prog Retin Eye Res. 2011;30(2):81–114.
pubmed: 21112411
pmcid: 3081075
La Morgia C, Carbonelli M, Barboni P, Sadun AA, Carelli V. Medical management of hereditary optic neuropathies. Front Neurol. 2014;5:141.
pubmed: 25132831
pmcid: 4117178
Achilli A, Iommarini L, Olivieri A, Pala M, Hooshiar Kashani B, Reynier P, La Morgia C, Valentino ML, Liguori R, Pizza F, Barboni P, et al. Rare primary mitochondrial DNA mutations and probable synergistic variants in Leber’s hereditary optic neuropathy. PLoS ONE. 2012;7(8):e42242.
pubmed: 22879922
pmcid: 3411744
Del Dotto V, Fogazza M, Carelli V, Rugolo M, Zanna C. Eight human opa1 isoforms, long and short: What are they for? Biochim Biophys Acta Bioenergy. 2018;1859(4):263–9.
Carelli V, La Morgia C, Valentino ML, Barboni P, Ross-Cisneros FN, Sadun AA. Retinal ganglion cell neurodegeneration in mitochondrial inherited disorders. Biochim Biophys Acta. 2009;1787(5):518–28.
pubmed: 19268652
Sadun AA, La Morgia C, Carelli V. Mitochondrial optic neuropathies: our travels from bench to bedside and back again. Clin Exp Ophthalmol. 2013;41(7):702–12.
pubmed: 23433229
Yu-Wai-Man P, Votruba M, Burte F, La Morgia C, Barboni P, Carelli V. A neurodegenerative perspective on mitochondrial optic neuropathies. Acta Neuropathol. 2016;132(6):789–806.
pubmed: 27696015
pmcid: 5106504
Carelli V, La Morgia C, Ross-Cisneros FN, Sadun AA. Optic neuropathies: the tip of the neurodegeneration iceberg. Hum Mol Genet. 2017;26(R2):R139–50.
pubmed: 28977448
pmcid: 5886475
Gueven N. Idebenone for leber’s hereditary optic neuropathy. Drugs Today (Barc). 2016;52(3):173–81.
Klopstock T, Yu-Wai-Man P, Dimitriadis K, Rouleau J, Heck S, Bailie M, Atawan A, Chattopadhyay S, Schubert M, Garip A, Kernt M, et al. A randomized placebo-controlled trial of idebenone in leber’s hereditary optic neuropathy. Brain. 2011;134(Pt 9):2677–86.
pubmed: 21788663
pmcid: 3170530
Carelli V, La Morgia C, Valentino ML, Rizzo G, Carbonelli M, De Negri AM, Sadun F, Carta A, Guerriero S, Simonelli F, Sadun AA, et al. Idebenone treatment in leber’s hereditary optic neuropathy. Brain. 2011;134(Pt 9):e188.
pubmed: 21810891
Barboni P, Valentino ML, La Morgia C, Carbonelli M, Savini G, De Negri A, Simonelli F, Sadun F, Caporali L, Maresca A, Liguori R, et al. Idebenone treatment in patients with opa1-mutant dominant optic atrophy. Brain. 2013;136(Pt 2):e231.
pubmed: 23388408
Romagnoli M, La Morgia C, Carbonelli M, Di Vito L, Amore G, Zenesini C, Cascavilla ML, Barboni P, Carelli V. Idebenone increases chance of stabilization/recovery of visual acuity in opa1-dominant optic atrophy. Ann Clin Transl Neurol. 2020;7(4):590–4.
pubmed: 32243103
pmcid: 7187718
Sadun AA, Chicani CF, Ross-Cisneros FN, Barboni P, Thoolen M, Shrader WD, Kubis K, Carelli V, Miller G. Effect of epi-743 on the clinical course of the mitochondrial disease leber hereditary optic neuropathy. Arch Neurol. 2012;69(3):331–8.
pubmed: 22410442
Rustum Karanjia SGC, Garcia M, Sadun AA. Elamipretide (mtp-131) topical ophthalmic solution for the treatment of leber’s hereditary optic neuropathy. Investig Ophthalmol Visual Sci. 2019;60:2266.
Pisano A, Preziuso C, Iommarini L, Perli E, Grazioli P, Campese AF, Maresca A, Montopoli M, Masuelli L, Sadun AA, d’Amati G, et al. Targeting estrogen receptor beta as preventive therapeutic strategy for leber’s hereditary optic neuropathy. Hum Mol Genet. 2015;24(24):6921–31.
pubmed: 26410888
Yu AK, Datta S, McMackin MZ, Cortopassi GA. Rescue of cell death and inflammation of a mouse model of complex 1-mediated vision loss by repurposed drug molecules. Hum Mol Genet. 2017;26(24):4929–36.
pubmed: 29040550
pmcid: 5886243
Indrieri A, Carrella S, Romano A, Spaziano A, Marrocco E, Fernandez-Vizarra E, Barbato S, Pizzo M, Ezhova Y, Golia FM, Ciampi L, et al. Mir-181a/b downregulation exerts a protective action on mitochondrial disease models. EMBO Mol Med. 2019;11(5):e8734.
pubmed: 30979712
pmcid: 6505685
Guy J, Qi X, Pallotti F, Schon EA, Manfredi G, Carelli V, Martinuzzi A, Hauswirth WW, Lewin AS. Rescue of a mitochondrial deficiency causing leber hereditary optic neuropathy. Ann Neurol. 2002;52(5):534–42.
pubmed: 12402249
Jurkute N, Harvey J, Yu-Wai-Man P. Treatment strategies for leber hereditary optic neuropathy. Curr Opin Neurol. 2019;32(1):99–104.
pubmed: 30516647
Sarzi E, Seveno M, Piro-Megy C, Elziere L, Quiles M, Pequignot M, Muller A, Hamel CP, Lenaers G, Delettre C. Opa1 gene therapy prevents retinal ganglion cell loss in a dominant optic atrophy mouse model. Sci Rep. 2018;8(1):2468.
pubmed: 29410463
pmcid: 5802757
Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol. 2018;20(7):745–54.
pubmed: 29950572
pmcid: 6541229
Chan DC. Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet. 2012;46:265–87.
pubmed: 22934639
Giacomello M, Pyakurel A, Glytsou C, Scorrano L. The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol. 2020;21(4):204–24.
pubmed: 32071438
Green DR, Galluzzi L, Kroemer G. Cell biology. Metabolic control of cell death. Science. 2014;345(6203):1250256.
pubmed: 25237106
pmcid: 4219413
De Stefani D, Rizzuto R, Pozzan T. Enjoy the trip: calcium in mitochondria back and forth. Annu Rev Biochem. 2016;85:161–92.
pubmed: 27145841
Pickles S, Vigie P, Youle RJ. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol. 2018;28(4):R170–85.
pubmed: 29462587
pmcid: 7255410
Mitchell P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature. 1961;191:144–8.
pubmed: 13771349
DiMauro S, Schon EA, Carelli V, Hirano M. The clinical maze of mitochondrial neurology. Nat Rev Neurol. 2013;9(8):429–44.
pubmed: 23835535
pmcid: 3959773
Gorman GS, Chinnery PF, DiMauro S, Hirano M, Koga Y, McFarland R, Suomalainen A, Thorburn DR, Zeviani M, Turnbull DM. Mitochondrial diseases. Nat Rev Dis Primers. 2016;2:16080.
pubmed: 27775730
Burte F, Carelli V, Chinnery PF, Yu-Wai-Man P. Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat Rev Neurol. 2015;11(1):11–24.
pubmed: 25486875
Sadun A. Acquired mitochondrial impairment as a cause of optic nerve disease. Trans Am Ophthalmol Soc. 1998;96:881–923.
pubmed: 10360310
pmcid: 1298416
Carelli V, Ross-Cisneros FN, Sadun AA. Optic nerve degeneration and mitochondrial dysfunction: genetic and acquired optic neuropathies. Neurochem Int. 2002;40(6):573–84.
pubmed: 11850115
Giordano L, Deceglie S, d’Adamo P, Valentino ML, La Morgia C, Fracasso F, Roberti M, Cappellari M, Petrosillo G, Ciaravolo S, Parente D, et al. Cigarette toxicity triggers leber’s hereditary optic neuropathy by affecting mtdna copy number, oxidative phosphorylation and ros detoxification pathways. Cell Death Dis. 2015;6:e2021.
pubmed: 26673666
pmcid: 4720897
Kirkman MA, Yu-Wai-Man P, Korsten A, Leonhardt M, Dimitriadis K, De Coo IF, Klopstock T, Chinnery PF. Gene-environment interactions in leber hereditary optic neuropathy. Brain. 2009;132(Pt 9):2317–26.
pubmed: 19525327
pmcid: 2732267
Sadun AA, Carelli V, Salomao SR, Berezovsky A, Quiros PA, Sadun F, DeNegri AM, Andrade R, Moraes M, Passos A, Kjaer P, et al. Extensive investigation of a large brazilian pedigree of 11778/haplogroup j leber hereditary optic neuropathy. Am J Ophthalmol. 2003;136(2):231–8.
pubmed: 12888043
Carelli V, d’Adamo P, Valentino ML, La Morgia C, Ross-Cisneros FN, Caporali L, Maresca A, Loguercio Polosa P, Barboni P, De Negri A, Sadun F, et al. Parsing the differences in affected with lhon: genetic versus environmental triggers of disease conversion. Brain. 2016;139(Pt 3):e17.
pubmed: 26657166
Ijaz S, Jackson J, Thorley H, Porter K, Fleming C, Richards A, Bonner A, Savovic J. Nutritional deficiencies in homeless persons with problematic drinking: a systematic review. Int J Equity Health. 2017;16(1):71.
pubmed: 28476156
pmcid: 5418701
Sadun AA. Metabolic optic neuropathies. Semin Ophthalmol. 2002;17(1):29–32.
pubmed: 15513453
Duewelhenke N, Krut O, Eysel P. Influence on mitochondria and cytotoxicity of different antibiotics administered in high concentrations on primary human osteoblasts and cell lines. Antimicrob Agents Chemother. 2007;51(1):54–63.
pubmed: 17088489
Pacheu-Grau D, Gomez-Duran A, Lopez-Perez MJ, Montoya J, Ruiz-Pesini E. Mitochondrial pharmacogenomics: barcode for antibiotic therapy. Drug Discov Today. 2010;15(1–2):33–9.
pubmed: 19883791
Payne BA, Wilson IJ, Hateley CA, Horvath R, Santibanez-Koref M, Samuels DC, Price DA, Chinnery PF. Mitochondrial aging is accelerated by anti-retroviral therapy through the clonal expansion of mtdna mutations. Nat Genet. 2011;43(8):806–10.
pubmed: 21706004
pmcid: 3223397
Gardner K, Hall PA, Chinnery PF, Payne BA. Hiv treatment and associated mitochondrial pathology: Review of 25 years of in vitro, animal, and human studies. Toxicol Pathol. 2014;42(5):811–22.
pubmed: 24067671
Klinge CM. Estrogenic control of mitochondrial function. Redox Biol. 2020;31:101435.
pubmed: 32001259
pmcid: 7212490
King MP, Attardi G. Human cells lacking mtdna: repopulation with exogenous mitochondria by complementation. Science. 1989;246(4929):500–3.
pubmed: 2814477
Giordano C, Montopoli M, Perli E, Orlandi M, Fantin M, Ross-Cisneros FN, Caparrotta L, Martinuzzi A, Ragazzi E, Ghelli A, Sadun AA, et al. Oestrogens ameliorate mitochondrial dysfunction in leber’s hereditary optic neuropathy. Brain. 2011;134(Pt 1):220–34.
pubmed: 20943885
Wredenberg A, Wibom R, Wilhelmsson H, Graff C, Wiener HH, Burden SJ, Oldfors A, Westerblad H, Larsson NG. Increased mitochondrial mass in mitochondrial myopathy mice. Proc Natl Acad Sci USA. 2002;99(23):15066–71.
pubmed: 12417746
Giordano C, Iommarini L, Giordano L, Maresca A, Pisano A, Valentino ML, Caporali L, Liguori R, Deceglie S, Roberti M, Fanelli F, et al. Efficient mitochondrial biogenesis drives incomplete penetrance in leber’s hereditary optic neuropathy. Brain. 2014;137(Pt 2):335–53.
pubmed: 24369379
Carelli V, Maresca A, Caporali L, Trifunov S, Zanna C, Rugolo M. Mitochondria: Biogenesis and mitophagy balance in segregation and clonal expansion of mitochondrial DNA mutations. Int J Biochem Cell Biol. 2015;63:21–4.
pubmed: 25666555
Sharma LK, Tiwari M, Rai NK, Bai Y. Mitophagy activation repairs leber’s hereditary optic neuropathy-associated mitochondrial dysfunction and improves cell survival. Hum Mol Genet. 2019;28(3):422–33.
pubmed: 30304398
Dombi E, Diot A, Morten K, Carver J, Lodge T, Fratter C, Ng YS, Liao C, Muir R, Blakely EL, Hargreaves I, et al. The m.13051g>a mitochondrial DNA mutation results in variable neurology and activated mitophagy. Neurology. 2016;86(20):1921–3.
pubmed: 27164671
pmcid: 4873683
Sadun AA, Win PH, Ross-Cisneros FN, Walker SO, Carelli V. Leber’s hereditary optic neuropathy differentially affects smaller axons in the optic nerve. Trans Am Ophthalmol Soc. 2000;98:223–32 (discussion 232–225).
pubmed: 11190025
pmcid: 1298228
Pan BX, Ross-Cisneros FN, Carelli V, Rue KS, Salomao SR, Moraes-Filho MN, Moraes MN, Berezovsky A, Belfort R Jr, Sadun AA. Mathematically modeling the involvement of axons in leber’s hereditary optic neuropathy. Invest Ophthalmol Vis Sci. 2012;53(12):7608–17.
pubmed: 23060142
pmcid: 3495603
Yu-Wai-Man P, Griffiths PG, Brown DT, Howell N, Turnbull DM, Chinnery PF. The epidemiology of leber hereditary optic neuropathy in the north east of England. Am J Hum Genet. 2003;72(2):333–9.
pubmed: 12518276
Puomila A, Hamalainen P, Kivioja S, Savontaus ML, Koivumaki S, Huoponen K, Nikoskelainen E. Epidemiology and penetrance of leber hereditary optic neuropathy in Finland. Eur J Hum Genet. 2007;15(10):1079–89.
pubmed: 17406640
Mascialino B, Leinonen M, Meier T. Meta-analysis of the prevalence of leber hereditary optic neuropathy mtdna mutations in Europe. Eur J Ophthalmol. 2012;22(3):461–5.
pubmed: 21928272
Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG, Lezza AM, Elsas LJ 2nd, Nikoskelainen EK. Mitochondrial DNA mutation associated with leber’s hereditary optic neuropathy. Science. 1988;242(4884):1427–30.
pubmed: 3201231
Caporali L, Maresca A, Capristo M, Del Dotto V, Tagliavini F, Valentino ML, La Morgia C, Carelli V. Incomplete penetrance in mitochondrial optic neuropathies. Mitochondrion. 2017;36:130–7.
pubmed: 28716668
Harding AE, Sweeney MG, Govan GG, Riordan-Eva P. Pedigree analysis in leber hereditary optic neuropathy families with a pathogenic mtdna mutation. Am J Hum Genet. 1995;57(1):77–86.
pubmed: 7611298
pmcid: 1801226
Torroni A, Petrozzi M, D’Urbano L, Sellitto D, Zeviani M, Carrara F, Carducci C, Leuzzi V, Carelli V, Barboni P, De Negri A, et al. Haplotype and phylogenetic analyses suggest that one european-specific mtdna background plays a role in the expression of leber hereditary optic neuropathy by increasing the penetrance of the primary mutations 11778 and 14484. Am J Hum Genet. 1997;60(5):1107–21.
pubmed: 9150158
pmcid: 1712418
Carelli V, Achilli A, Valentino ML, Rengo C, Semino O, Pala M, Olivieri A, Mattiazzi M, Pallotti F, Carrara F, Zeviani M, et al. Haplogroup effects and recombination of mitochondrial DNA: novel clues from the analysis of leber hereditary optic neuropathy pedigrees. Am J Hum Genet. 2006;78(4):564–74.
pubmed: 16532388
pmcid: 1424694
Hudson G, Carelli V, Spruijt L, Gerards M, Mowbray C, Achilli A, Pyle A, Elson J, Howell N, La Morgia C, Valentino ML, et al. Clinical expression of leber hereditary optic neuropathy is affected by the mitochondrial DNA-haplogroup background. Am J Hum Genet. 2007;81(2):228–33.
pubmed: 17668373
pmcid: 1950812
Caporali L, Iommarini L, La Morgia C, Olivieri A, Achilli A, Maresca A, Valentino ML, Capristo M, Tagliavini F, Del Dotto V, Zanna C, et al. Peculiar combinations of individually non-pathogenic missense mitochondrial DNA variants cause low penetrance leber’s hereditary optic neuropathy. PLoS Genet. 2018;14(2):e1007210.
pubmed: 29444077
pmcid: 5828459
Jiang P, Jin X, Peng Y, Wang M, Liu H, Liu X, Zhang Z, Ji Y, Zhang J, Liang M, Zhao F, et al. The exome sequencing identified the mutation in yars2 encoding the mitochondrial tyrosyl-trna synthetase as a nuclear modifier for the phenotypic manifestation of leber’s hereditary optic neuropathy-associated mitochondrial DNA mutation. Hum Mol Genet. 2016;25(3):584–96.
pubmed: 26647310
Yu J, Liang X, Ji Y, Ai C, Liu J, Zhu L, Nie Z, Jin X, Wang C, Zhang J, Zhao F, et al. Prickle3 linked to atpase biogenesis manifested leber's hereditary optic neuropathy. J Clin Invest. 2020;130(9):4935–46.
pubmed: 32516135
pmcid: 7456240
Bu XD, Rotter JI. X chromosome-linked and mitochondrial gene control of leber hereditary optic neuropathy: evidence from segregation analysis for dependence on x chromosome inactivation. Proc Natl Acad Sci USA. 1991;88(18):8198–202.
pubmed: 1896469
Vilkki J, Ott J, Savontaus ML, Aula P, Nikoskelainen EK. Optic atrophy in leber hereditary optic neuroretinopathy is probably determined by an x-chromosomal gene closely linked to dxs7. Am J Hum Genet. 1991;48(3):486–91.
pubmed: 1998335
pmcid: 1682980
Sweeney MG, Davis MB, Lashwood A, Brockington M, Toscano A, Harding AE. Evidence against an x-linked locus close to dxs7 determining visual loss susceptibility in British and Italian families with Leber hereditary optic neuropathy. Am J Hum Genet. 1992;51(4):741–8.
pubmed: 1415219
pmcid: 1682819
Pegoraro E, Carelli V, Zeviani M, Cortelli P, Montagna P, Barboni P, Angelini C, Hoffman EP. X-inactivation patterns in female leber’s hereditary optic neuropathy patients do not support a strong x-linked determinant. Am J Med Genet. 1996;61(4):356–62.
pubmed: 8834048
Hudson G, Keers S, Yu-Wai-Man P, Griffiths P, Huoponen K, Savontaus ML, Nikoskelainen E, Zeviani M, Carrara F, Horvath R, Karcagi V, et al. Identification of an x-chromosomal locus and haplotype modulating the phenotype of a mitochondrial DNA disorder. Am J Hum Genet. 2005;77(6):1086–91.
pubmed: 16380918
pmcid: 1285165
Shankar SP, Fingert JH, Carelli V, Valentino ML, King TM, Daiger SP, Salomao SR, Berezovsky A, Belfort R Jr, Braun TA, Sheffield VC, et al. Evidence for a novel x-linked modifier locus for leber hereditary optic neuropathy. Ophthalmic Genet. 2008;29(1):17–24.
pubmed: 18363168
Rosenberg T, Norby S, Schwartz M, Saillard J, Magalhaes PJ, Leroy D, Kann EC, Duno M. Prevalence and genetics of leber hereditary optic neuropathy in the Danish population. Invest Ophthalmol Vis Sci. 2016;57(3):1370–5.
pubmed: 27007794
Yu-Wai-Man P, Hudson G, Klopstock T, Chinnery PF. Reply: parsing the differences in affected with Lhon: genetic versus environmental triggers of disease conversion. Brain. 2016;139(Pt 3):e18.
pubmed: 26657167
Carelli V, Carbonelli M, de Coo IF, Kawasaki A, Klopstock T, Lagreze WA, La Morgia C, Newman NJ, Orssaud C, Pott JWR, Sadun AA, et al. International consensus statement on the clinical and therapeutic management of leber hereditary optic neuropathy. J Neuroophthalmol. 2017;37(4):371–81.
pubmed: 28991104
Barboni P, Savini G, Valentino ML, Montagna P, Cortelli P, De Negri AM, Sadun F, Bianchi S, Longanesi L, Zanini M, de Vivo A, et al. Retinal nerve fiber layer evaluation by optical coherence tomography in leber’s hereditary optic neuropathy. Ophthalmology. 2005;112(1):120–6.
pubmed: 15629831
Barboni P, Carbonelli M, Savini G, Ramos Cdo V, Carta A, Berezovsky A, Salomao SR, Carelli V, Sadun AA. Natural history of leber’s hereditary optic neuropathy: longitudinal analysis of the retinal nerve fiber layer by optical coherence tomography. Ophthalmology. 2010;117(3):623–7.
pubmed: 20031228
Balducci N, Savini G, Cascavilla ML, La Morgia C, Triolo G, Giglio R, Carbonelli M, Parisi V, Sadun AA, Bandello F, Carelli V, et al. Macular nerve fibre and ganglion cell layer changes in acute leber’s hereditary optic neuropathy. Br J Ophthalmol. 2016;100(9):1232–7.
pubmed: 26614631
Newman NJ, Carelli V, Taiel M, Yu-Wai-Man P. Visual outcomes in leber hereditary optic neuropathy patients with the m.11778g>a (mtnd4) mitochondrial DNA mutation. J Neuroophthalmol. 2020.
Hwang TJ, Karanjia R, Moraes-Filho MN, Gale J, Tran JS, Chu ER, Salomao SR, Berezovsky A, Belfort R Jr, Moraes MN, Sadun F, et al. Natural history of conversion of leber’s hereditary optic neuropathy: a prospective case series. Ophthalmology. 2017;124(6):843–50.
pubmed: 28196731
Newman NJ, Biousse V. Hereditary optic neuropathies. Eye (Lond). 2004;18(11):1144–60.
Lenaers G, Hamel C, Delettre C, Amati-Bonneau P, Procaccio V, Bonneau D, Reynier P, Milea D. Dominant optic atrophy. Orphanet J Rare Dis. 2012;7:46.
pubmed: 22776096
pmcid: 3526509
Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S, Moore A, Rodriguez M, Kellner U, Leo-Kottler B, Auburger G, Bhattacharya SS, et al. Opa1, encoding a dynamin-related gtpase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet. 2000;26(2):211–5.
pubmed: 11017080
Delettre C, Lenaers G, Griffoin JM, Gigarel N, Lorenzo C, Belenguer P, Pelloquin L, Grosgeorge J, Turc-Carel C, Perret E, Astarie-Dequeker C, et al. Nuclear gene opa1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet. 2000;26(2):207–10.
pubmed: 11017079
Lenaers G, Reynier P, Elachouri G, Soukkarieh C, Olichon A, Belenguer P, Baricault L, Ducommun B, Hamel C, Delettre C. Opa1 functions in mitochondria and dysfunctions in optic nerve. Int J Biochem Cell Biol. 2009;41(10):1866–74.
pubmed: 19389483
Del Dotto V, Fogazza M, Lenaers G, Rugolo M, Carelli V, Zanna C. Opa1: how much do we know to approach therapy? Pharmacol Res. 2018;131:199–210.
pubmed: 29454676
Pesch UE, Leo-Kottler B, Mayer S, Jurklies B, Kellner U, Apfelstedt-Sylla E, Zrenner E, Alexander C, Wissinger B. Opa1 mutations in patients with autosomal dominant optic atrophy and evidence for semi-dominant inheritance. Hum Mol Genet. 2001;10(13):1359–68.
pubmed: 11440988
Yu-Wai-Man P, Griffiths PG, Burke A, Sellar PW, Clarke MP, Gnanaraj L, Ah-Kine D, Hudson G, Czermin B, Taylor RW, Horvath R, et al. The prevalence and natural history of dominant optic atrophy due to opa1 mutations. Ophthalmology. 2010;117(8):1538–46 (1546 e1531).
pubmed: 20417570
pmcid: 4040407
Amati-Bonneau P, Odent S, Derrien C, Pasquier L, Malthiery Y, Reynier P, Bonneau D. The association of autosomal dominant optic atrophy and moderate deafness may be due to the r445h mutation in the opa1 gene. Am J Ophthalmol. 2003;136(6):1170–1.
pubmed: 14644237
Payne M, Yang Z, Katz BJ, Warner JE, Weight CJ, Zhao Y, Pearson ED, Treft RL, Hillman T, Kennedy RJ, Meire FM, et al. Dominant optic atrophy, sensorineural hearing loss, ptosis, and ophthalmoplegia: a syndrome caused by a missense mutation in opa1. Am J Ophthalmol. 2004;138(5):749–55.
pubmed: 15531309
Amati-Bonneau P, Valentino ML, Reynier P, Gallardo ME, Bornstein B, Boissiere A, Campos Y, Rivera H, de la Aleja JG, Carroccia R, Iommarini L, et al. Opa1 mutations induce mitochondrial DNA instability and optic atrophy “plus” phenotypes. Brain. 2008;131(Pt 2):338–51.
pubmed: 18158317
Hudson G, Amati-Bonneau P, Blakely EL, Stewart JD, He L, Schaefer AM, Griffiths PG, Ahlqvist K, Suomalainen A, Reynier P, McFarland R, et al. Mutation of opa1 causes dominant optic atrophy with external ophthalmoplegia, ataxia, deafness and multiple mitochondrial DNA deletions: a novel disorder of mtdna maintenance. Brain. 2008;131(Pt 2):329–37.
pubmed: 18065439
Yu-Wai-Man P, Griffiths PG, Gorman GS, Lourenco CM, Wright AF, Auer-Grumbach M, Toscano A, Musumeci O, Valentino ML, Caporali L, Lamperti C, et al. Multi-system neurological disease is common in patients with opa1 mutations. Brain. 2010;133(Pt 3):771–86.
pubmed: 20157015
pmcid: 2842512
Verny C, Loiseau D, Scherer C, Lejeune P, Chevrollier A, Gueguen N, Guillet V, Dubas F, Reynier P, Amati-Bonneau P, Bonneau D. Multiple sclerosis-like disorder in opa1-related autosomal dominant optic atrophy. Neurology. 2008;70(13 Pt 2):1152–3.
pubmed: 18287570
Marelli C, Amati-Bonneau P, Reynier P, Layet V, Layet A, Stevanin G, Brissaud E, Bonneau D, Durr A, Brice A. Heterozygous opa1 mutations in behr syndrome. Brain. 2011;134(Pt 4):e169 (author reply e170).
pubmed: 21112924
Carelli V, Musumeci O, Caporali L, Zanna C, La Morgia C, Del Dotto V, Porcelli AM, Rugolo M, Valentino ML, Iommarini L, Maresca A, et al. Syndromic parkinsonism and dementia associated with opa1 missense mutations. Ann Neurol. 2015;78(1):21–38.
pubmed: 25820230
pmcid: 5008165
Lynch DS, Loh SHY, Harley J, Noyce AJ, Martins LM, Wood NW, Houlden H, Plun-Favreau H. Nonsyndromic Parkinson disease in a family with autosomal dominant optic atrophy due to opa1 mutations. Neurol Genet. 2017;3(5):e188.
pubmed: 28955727
pmcid: 5610041
Schaaf CP, Blazo M, Lewis RA, Tonini RE, Takei H, Wang J, Wong LJ, Scaglia F. Early-onset severe neuromuscular phenotype associated with compound heterozygosity for opa1 mutations. Mol Genet Metab. 2011;103(4):383–7.
pubmed: 21636302
Bonneau D, Colin E, Oca F, Ferre M, Chevrollier A, Gueguen N, Desquiret-Dumas V, N’Guyen S, Barth M, Zanlonghi X, Rio M, et al. Early-onset behr syndrome due to compound heterozygous mutations in opa1. Brain. 2014;137(Pt 10):e301.
pubmed: 25012220
Carelli V, Sabatelli M, Carrozzo R, Rizza T, Schimpf S, Wissinger B, Zanna C, Rugolo M, La Morgia C, Caporali L, Carbonelli M, et al. “Behr syndrome” with opa1 compound heterozygote mutations. Brain. 2015;138(Pt 1):e321.
pubmed: 25146916
Nasca A, Rizza T, Doimo M, Legati A, Ciolfi A, Diodato D, Calderan C, Carrara G, Lamantea E, Aiello C, Di Nottia M, et al. Not only dominant, not only optic atrophy: expanding the clinical spectrum associated with opa1 mutations. Orphanet J Rare Dis. 2017;12(1):89.
pubmed: 28494813
pmcid: 5427524
Spiegel R, Saada A, Flannery PJ, Burte F, Soiferman D, Khayat M, Eisner V, Vladovski E, Taylor RW, Bindoff LA, Shaag A, et al. Fatal infantile mitochondrial encephalomyopathy, hypertrophic cardiomyopathy and optic atrophy associated with a homozygous opa1 mutation. J Med Genet. 2016;53(2):127–31.
pubmed: 26561570
Rubegni A, Pisano T, Bacci G, Tessa A, Battini R, Procopio E, Giglio S, Pasquariello R, Santorelli FM, Guerrini R, Nesti C. Leigh-like neuroimaging features associated with new biallelic mutations in opa1. Eur J Paediatr Neurol. 2017;21(4):671–7.
pubmed: 28442211
Yu-Wai-Man P, Bailie M, Atawan A, Chinnery PF, Griffiths PG. Pattern of retinal ganglion cell loss in dominant optic atrophy due to opa1 mutations. Eye (Lond). 2011;25(5):596–602.
Chevrollier A, Guillet V, Loiseau D, Gueguen N, de Crescenzo MA, Verny C, Ferre M, Dollfus H, Odent S, Milea D, Goizet C, et al. Hereditary optic neuropathies share a common mitochondrial coupling defect. Ann Neurol. 2008;63(6):794–8.
pubmed: 18496845
Zanna C, Ghelli A, Porcelli AM, Karbowski M, Youle RJ, Schimpf S, Wissinger B, Pinti M, Cossarizza A, Vidoni S, Valentino ML, et al. Opa1 mutations associated with dominant optic atrophy impair oxidative phosphorylation and mitochondrial fusion. Brain. 2008;131(Pt 2):352–67.
pubmed: 18222991
Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko GV, Rudka T, Bartoli D, Polishuck RS, Danial NN, De Strooper B, Scorrano L. Opa1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell. 2006;126(1):177–89.
pubmed: 16839885
Gerber S, Ding MG, Gerard X, Zwicker K, Zanlonghi X, Rio M, Serre V, Hanein S, Munnich A, Rotig A, Bianchi L, et al. Compound heterozygosity for severe and hypomorphic ndufs2 mutations cause non-syndromic Lhon-like optic neuropathy. J Med Genet. 2017;54(5):346–56.
pubmed: 28031252
Hanein S, Perrault I, Roche O, Gerber S, Khadom N, Rio M, Boddaert N, Jean-Pierre M, Brahimi N, Serre V, Chretien D, et al. Tmem126a, encoding a mitochondrial protein, is mutated in autosomal-recessive nonsyndromic optic atrophy. Am J Hum Genet. 2009;84(4):493–8.
pubmed: 19327736
pmcid: 2667974
La Morgia C, Caporali L, Tagliavini F, Palombo F, Carbonelli M, Liguori R, Barboni P, Carelli V. First tmem126a missense mutation in an Italian proband with optic atrophy and deafness. Neurol Genet. 2019;5(3):e329.
pubmed: 31119195
pmcid: 6499220
Angebault C, Guichet PO, Talmat-Amar Y, Charif M, Gerber S, Fares-Taie L, Gueguen N, Halloy F, Moore D, Amati-Bonneau P, Manes G, et al. Recessive mutations in rtn4ip1 cause isolated and syndromic optic neuropathies. Am J Hum Genet. 2015;97(5):754–60.
pubmed: 26593267
pmcid: 4667133
Charif M, Nasca A, Thompson K, Gerber S, Makowski C, Mazaheri N, Bris C, Goudenege D, Legati A, Maroofian R, Shariati G, et al. Neurologic phenotypes associated with mutations in rtn4ip1 (opa10) in children and young adults. JAMA Neurol. 2018;75(1):105–13.
pubmed: 29181510
Abrams AJ, Hufnagel RB, Rebelo A, Zanna C, Patel N, Gonzalez MA, Campeanu IJ, Griffin LB, Groenewald S, Strickland AV, Tao F, et al. Mutations in slc25a46, encoding a ugo1-like protein, cause an optic atrophy spectrum disorder. Nat Genet. 2015;47(8):926–32.
pubmed: 26168012
pmcid: 4520737
Metodiev MD, Gerber S, Hubert L, Delahodde A, Chretien D, Gerard X, Amati-Bonneau P, Giacomotto MC, Boddaert N, Kaminska A, Desguerre I, et al. Mutations in the tricarboxylic acid cycle enzyme, aconitase 2, cause either isolated or syndromic optic neuropathy with encephalopathy and cerebellar atrophy. J Med Genet. 2014;51(12):834–8.
pubmed: 25351951
Hartmann B, Wai T, Hu H, MacVicar T, Musante L, Fischer-Zirnsak B, Stenzel W, Graf R, van den Heuvel L, Ropers HH, Wienker TF, et al. Homozygous yme1l1 mutation causes mitochondriopathy with optic atrophy and mitochondrial network fragmentation. Elife. 2016;5:e16078.
pubmed: 27495975
pmcid: 4991934
Klebe S, Depienne C, Gerber S, Challe G, Anheim M, Charles P, Fedirko E, Lejeune E, Cottineau J, Brusco A, Dollfus H, et al. Spastic paraplegia gene 7 in patients with spasticity and/or optic neuropathy. Brain. 2012;135(Pt 10):2980–93.
pubmed: 23065789
pmcid: 3470714
Caporali L, Magri S, Legati A, Del Dotto V, Tagliavini F, Balistreri F, Nasca A, La Morgia C, Carbonelli M, Valentino ML, Lamantea E, et al. Atpase domain afg3l2 mutations alter opa1 processing and cause optic neuropathy. Ann Neurol. 2020;88(1):18–32.
pubmed: 32219868
pmcid: 7383914
Charif M, Chevrollier A, Gueguen N, Bris C, Goudenege D, Desquiret-Dumas V, Leruez S, Colin E, Meunier A, Vignal C, Smirnov V, et al. Mutations in the m-aaa proteases afg3l2 and spg7 are causing isolated dominant optic atrophy. Neurol Genet. 2020;6(3):e428.
pubmed: 32548275
pmcid: 7251510
Orsucci D, Ienco EC, Siciliano G, Mancuso M. Mitochondrial disorders and drugs: what every physician should know. Drugs Context. 2019;8:212588.
pubmed: 31391854
pmcid: 6668504
Mantle D, Dybring A. Bioavailability of coenzyme q10: an overview of the absorption process and subsequent metabolism. Antioxidants (Basel). 2020;9(5):386.
Glover EI, Martin J, Maher A, Thornhill RE, Moran GR, Tarnopolsky MA. A randomized trial of coenzyme q10 in mitochondrial disorders. Muscle Nerve. 2010;42(5):739–48.
pubmed: 20886510
Huang CC, Kuo HC, Chu CC, Kao LY. Rapid visual recovery after coenzyme q10 treatment of leber hereditary optic neuropathy. J Neuroophthalmol. 2002;22(1):66.
pubmed: 11937918
Tarnopolsky MA. The mitochondrial cocktail: rationale for combined nutraceutical therapy in mitochondrial cytopathies. Adv Drug Deliv Rev. 2008;60(13–14):1561–7.
pubmed: 18647623
Rodriguez MC, MacDonald JR, Mahoney DJ, Parise G, Beal MF, Tarnopolsky MA. Beneficial effects of creatine, coq10, and lipoic acid in mitochondrial disorders. Muscle Nerve. 2007;35(2):235–42.
pubmed: 17080429
Beyrath J, Pellegrini M, Renkema H, Houben L, Pecheritsyna S, van Zandvoort P, van den Broek P, Bekel A, Eftekhari P, Smeitink JAM. Kh176 safeguards mitochondrial diseased cells from redox stress-induced cell death by interacting with the thioredoxin system/peroxiredoxin enzyme machinery. Sci Rep. 2018;8(1):6577.
pubmed: 29700325
pmcid: 5920042
Haefeli RH, Erb M, Gemperli AC, Robay D, Courdier Fruh I, Anklin C, Dallmann R, Gueven N. Nqo1-dependent redox cycling of idebenone: effects on cellular redox potential and energy levels. PLoS ONE. 2011;6(3):e17963.
pubmed: 21483849
pmcid: 3069029
Ghelli A, Degli Esposti M, Carelli V, Lenaz G. Changes in mitochondrial complex i activity and coenzyme q binding site in leber’s hereditary optic neuropathy (Lhon). Mol Aspects Med. 1997;18(Suppl):S263-267.
pubmed: 9266534
Varricchio C, Beirne K, Heard C, Newland B, Rozanowska M, Brancale A, Votruba M. The ying and yang of idebenone: not too little, not too much—cell death in nqo1 deficient cells and the mouse retina. Free Radic Biol Med. 2020;152:551–60.
pubmed: 31775023
Jaber SM, Ge SX, Milstein JL, VanRyzin JW, Waddell J, Polster BM. Idebenone has distinct effects on mitochondrial respiration in cortical astrocytes compared to cortical neurons due to differential nqo1 activity. J Neurosci. 2020;40(23):4609–19.
pubmed: 32350039
pmcid: 7275857
Giorgio V, Petronilli V, Ghelli A, Carelli V, Rugolo M, Lenaz G, Bernardi P. The effects of idebenone on mitochondrial bioenergetics. Biochim Biophys Acta. 2012;1817(2):363–9.
pubmed: 22086148
pmcid: 3265671
Yu-Wai-Man P, Soiferman D, Moore DG, Burte F, Saada A. Evaluating the therapeutic potential of idebenone and related quinone analogues in leber hereditary optic neuropathy. Mitochondrion. 2017;36:36–42.
pubmed: 28093355
pmcid: 5644719
Heitz FD, Erb M, Anklin C, Robay D, Pernet V, Gueven N. Idebenone protects against retinal damage and loss of vision in a mouse model of leber’s hereditary optic neuropathy. PLoS ONE. 2012;7(9):e45182.
pubmed: 23028832
pmcid: 3445472
Kutz K, Drewe J, Vankan P. Pharmacokinetic properties and metabolism of idebenone. J Neurol. 2009;256(Suppl 1):31–5.
pubmed: 19283348
Klopstock T, Metz G, Yu-Wai-Man P, Buchner B, Gallenmuller C, Bailie M, Nwali N, Griffiths PG, von Livonius B, Reznicek L, Rouleau J, et al. Persistence of the treatment effect of idebenone in leber’s hereditary optic neuropathy. Brain. 2013;136(Pt 2):e230.
pubmed: 23388409
pmcid: 3572931
Catarino CB, von Livonius B, Priglinger C, Banik R, Matloob S, Tamhankar MA, Castillo L, Friedburg C, Halfpenny CA, Lincoln JA, Traber GL, et al. Real-world clinical experience with idebenone in the treatment of leber hereditary optic neuropathy. J Neuroophthalmol. 2020.
Baracca A, Solaini G, Sgarbi G, Lenaz G, Baruzzi A, Schapira AH, Martinuzzi A, Carelli V. Severe impairment of complex i-driven adenosine triphosphate synthesis in leber hereditary optic neuropathy cybrids. Arch Neurol. 2005;62(5):730–6.
pubmed: 15883259
Tang S, Le PK, Tse S, Wallace DC, Huang T. Heterozygous mutation of opa1 in drosophila shortens lifespan mediated through increased reactive oxygen species production. PLoS ONE. 2009;4(2):e4492.
pubmed: 19221591
pmcid: 2637430
Yarosh W, Monserrate J, Tong JJ, Tse S, Le PK, Nguyen K, Brachmann CB, Wallace DC, Huang T. The molecular mechanisms of opa1-mediated optic atrophy in drosophila model and prospects for antioxidant treatment. PLoS Genet. 2008;4(1):e6.
pubmed: 18193945
pmcid: 2174975
Millet AM, Bertholet AM, Daloyau M, Reynier P, Galinier A, Devin A, Wissinguer B, Belenguer P, Davezac N. Loss of functional opa1 unbalances redox state: implications in dominant optic atrophy pathogenesis. Ann Clin Transl Neurol. 2016;3(6):408–21.
pubmed: 27547769
pmcid: 4891995
Smith TG, Seto S, Ganne P, Votruba M. A randomized, placebo-controlled trial of the benzoquinone idebenone in a mouse model of opa1-related dominant optic atrophy reveals a limited therapeutic effect on retinal ganglion cell dendropathy and visual function. Neuroscience. 2016;319:92–106.
pubmed: 26820596
Williams PA, Morgan JE, Votruba M. Opa1 deficiency in a mouse model of dominant optic atrophy leads to retinal ganglion cell dendropathy. Brain. 2010;133(10):2942–51.
pubmed: 20817698
Shrader WD, Amagata A, Barnes A, Enns GM, Hinman A, Jankowski O, Kheifets V, Komatsuzaki R, Lee E, Mollard P, Murase K, et al. Alpha-tocotrienol quinone modulates oxidative stress response and the biochemistry of aging. Bioorg Med Chem Lett. 2011;21(12):3693–8.
pubmed: 21600768
Zesiewicz T, Salemi JL, Perlman S, Sullivan KL, Shaw JD, Huang Y, Isaacs C, Gooch C, Lynch DR, Klein MB. Double-blind, randomized and controlled trial of epi-743 in friedreich’s ataxia. Neurodegener Dis Manag. 2018;8(4):233–42.
pubmed: 30051753
Fortuna F, Barboni P, Liguori R, Valentino ML, Savini G, Gellera C, Mariotti C, Rizzo G, Tonon C, Manners D, Lodi R, et al. Visual system involvement in patients with friedreich’s ataxia. Brain. 2009;132(Pt 1):116–23.
pubmed: 18931386
Szeto HH. First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br J Pharmacol. 2014;171(8):2029–50.
pubmed: 24117165
pmcid: 3976620
Daum G. Lipids of mitochondria. Biochim Biophys Acta. 1985;822(1):1–42.
pubmed: 2408671
Mileykovskaya E, Dowhan W. Cardiolipin-dependent formation of mitochondrial respiratory supercomplexes. Chem Phys Lipids. 2014;179:42–8.
pubmed: 24220496
Karaa A, Haas R, Goldstein A, Vockley J, Weaver WD, Cohen BH. Randomized dose-escalation trial of elamipretide in adults with primary mitochondrial myopathy. Neurology. 2018;90(14):e1212–21.
pubmed: 29500292
pmcid: 5890606
Leruez S, Verny C, Bonneau D, Procaccio V, Lenaers G, Amati-Bonneau P, Reynier P, Scherer C, Prundean A, Orssaud C, Zanlonghi X, et al. Cyclosporine a does not prevent second-eye involvement in leber’s hereditary optic neuropathy. Orphanet J Rare Dis. 2018;13(1):33.
pubmed: 29454364
pmcid: 5816422
Eells JT, Wong-Riley MT, VerHoeve J, Henry M, Buchman EV, Kane MP, Gould LJ, Das R, Jett M, Hodgson BD, Margolis D, et al. Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion. 2004;4(5–6):559–67.
pubmed: 16120414
Garafalo AV, Cideciyan AV, Heon E, Sheplock R, Pearson A, Yu CW, Sumaroka A, Aguirre GD, Jacobson SG. Progress in treating inherited retinal diseases: early subretinal gene therapy clinical trials and candidates for future initiatives. Prog Retin Eye Res. 2019;77:100827.
pubmed: 31899291
Yu H, Koilkonda RD, Chou TH, Porciatti V, Ozdemir SS, Chiodo V, Boye SL, Boye SE, Hauswirth WW, Lewin AS, Guy J. Gene delivery to mitochondria by targeting modified adenoassociated virus suppresses leber’s hereditary optic neuropathy in a mouse model. Proc Natl Acad Sci USA. 2012;109(20):E1238-1247.
pubmed: 22523243
Yu H, Koilkonda RD, Chou TH, Porciatti V, Mehta A, Hentall ID, Chiodo VA, Boye SL, Hauswirth WW, Lewin AS, Guy J. Consequences of zygote injection and germline transfer of mutant human mitochondrial DNA in mice. Proc Natl Acad Sci USA. 2015;112(42):E5689-5698.
pubmed: 26438859
Wang G, Shimada E, Zhang J, Hong JS, Smith GM, Teitell MA, Koehler CM. Correcting human mitochondrial mutations with targeted rna import. Proc Natl Acad Sci USA. 2012;109(13):4840–5.
pubmed: 22411789
Gammage PA, Moraes CT, Minczuk M. Mitochondrial genome engineering: the revolution may not be crispr-ized. Trends Genet. 2018;34(2):101–10.
pubmed: 29179920
pmcid: 5783712
Mok BY, de Moraes MH, Zeng J, Bosch DE, Kotrys AV, Raguram A, Hsu F, Radey MC, Peterson SB, Mootha VK, Mougous JD, et al. A bacterial cytidine deaminase toxin enables crispr-free mitochondrial base editing. Nature. 2020;583(7817):631–7.
pubmed: 32641830
pmcid: 7381381
Gray RE, Law RH, Devenish RJ, Nagley P. Allotopic expression of mitochondrial atp synthase genes in nucleus of Saccharomyces cerevisiae. Methods Enzymol. 1996;264:369–89.
pubmed: 8965711
Roucou X, Artika IM, Devenish RJ, Nagley P. Bioenergetic and structural consequences of allotopic expression of subunit 8 of yeast mitochondrial atp synthase. The hydrophobic character of residues 23 and 24 is essential for maximal activity and structural stability of the enzyme complex. Eur J Biochem. 1999;261(2):444–51.
pubmed: 10215855
de Grey AD. Mitochondrial gene therapy: an arena for the biomedical use of inteins. Trends Biotechnol. 2000;18(9):394–9.
pubmed: 10942964
Zullo SJ. Gene therapy of mitochondrial DNA mutations: a brief, biased history of allotopic expression in mammalian cells. Semin Neurol. 2001;21(3):327–35.
pubmed: 11641822
Manfredi G, Fu J, Ojaimi J, Sadlock JE, Kwong JQ, Guy J, Schon EA. Rescue of a deficiency in atp synthesis by transfer of mtatp6, a mitochondrial DNA-encoded gene, to the nucleus. Nat Genet. 2002;30(4):394–9.
pubmed: 11925565
Oca-Cossio J, Kenyon L, Hao H, Moraes CT. Limitations of allotopic expression of mitochondrial genes in mammalian cells. Genetics. 2003;165(2):707–20.
pubmed: 14573482
pmcid: 1462783
Perales-Clemente E, Fernandez-Silva P, Acin-Perez R, Perez-Martos A, Enriquez JA. Allotopic expression of mitochondrial-encoded genes in mammals: achieved goal, undemonstrated mechanism or impossible task? Nucleic Acids Res. 2011;39(1):225–34.
pubmed: 20823090
Figueroa-Martinez F, Vazquez-Acevedo M, Cortes-Hernandez P, Garcia-Trejo JJ, Davidson E, King MP, Gonzalez-Halphen D. What limits the allotopic expression of nucleus-encoded mitochondrial genes? The case of the chimeric cox3 and atp6 genes. Mitochondrion. 2011;11(1):147–54.
pubmed: 20854934
Bonnet C, Kaltimbacher V, Ellouze S, Augustin S, Benit P, Forster V, Rustin P, Sahel JA, Corral-Debrinski M. Allotopic mrna localization to the mitochondrial surface rescues respiratory chain defects in fibroblasts harboring mitochondrial DNA mutations affecting complex i or v subunits. Rejuvenation Res. 2007;10(2):127–44.
pubmed: 17518546
Bonnet C, Augustin S, Ellouze S, Benit P, Bouaita A, Rustin P, Sahel JA, Corral-Debrinski M. The optimized allotopic expression of nd1 or nd4 genes restores respiratory chain complex i activity in fibroblasts harboring mutations in these genes. Biochim Biophys Acta. 2008;1783(10):1707–17.
pubmed: 18513491
Pei H, Wan X, Hu W, Dong X, Li B. Construction and detection of a novel type of recombinant human raav2/2-nd4. Eye Sci. 2013;28(2):55–9.
pubmed: 24396955
Karaarslan C. Leber’s hereditary optic neuropathy as a promising disease for gene therapy development. Adv Ther. 2019;36(12):3299–307.
pubmed: 31605306
pmcid: 6860503
Qi X, Sun L, Lewin AS, Hauswirth WW, Guy J. The mutant human nd4 subunit of complex i induces optic neuropathy in the mouse. Invest Ophthalmol Vis Sci. 2007;48(1):1–10.
pubmed: 17197509
Ellouze S, Augustin S, Bouaita A, Bonnet C, Simonutti M, Forster V, Picaud S, Sahel JA, Corral-Debrinski M. Optimized allotopic expression of the human mitochondrial nd4 prevents blindness in a rat model of mitochondrial dysfunction. Am J Hum Genet. 2008;83(3):373–87.
pubmed: 18771762
pmcid: 2556433
Koilkonda RD, Chou TH, Porciatti V, Hauswirth WW, Guy J. Induction of rapid and highly efficient expression of the human nd4 complex i subunit in the mouse visual system by self-complementary adeno-associated virus. Arch Ophthalmol. 2010;128(7):876–83.
pubmed: 20625049
pmcid: 3431796
Cwerman-Thibault H, Augustin S, Lechauve C, Ayache J, Ellouze S, Sahel JA, Corral-Debrinski M. Nuclear expression of mitochondrial nd4 leads to the protein assembling in complex i and prevents optic atrophy and visual loss. Mol Ther Methods Clin Dev. 2015;2:15003.
pubmed: 26029714
pmcid: 4444999
Koilkonda R, Yu H, Talla V, Porciatti V, Feuer WJ, Hauswirth WW, Chiodo V, Erger KE, Boye SL, Lewin AS, Conlon TJ, et al. Lhon gene therapy vector prevents visual loss and optic neuropathy induced by g11778a mutant mitochondrial DNA: biodistribution and toxicology profile. Invest Ophthalmol Vis Sci. 2014;55(12):7739–53.
pubmed: 25342621
pmcid: 4249950
Lin CS, Sharpley MS, Fan W, Waymire KG, Sadun AA, Carelli V, Ross-Cisneros FN, Baciu P, Sung E, McManus MJ, Pan BX, et al. Mouse mtdna mutant model of leber hereditary optic neuropathy. Proc Natl Acad Sci USA. 2012;109(49):20065–70.
pubmed: 23129651
Barrientos A, Kenyon L, Moraes CT. Human xenomitochondrial cybrids. Cellular models of mitochondrial complex i deficiency. J Biol Chem. 1998;273(23):14210–7.
pubmed: 9603924
Feuer WJ, Schiffman JC, Davis JL, Porciatti V, Gonzalez P, Koilkonda RD, Yuan H, Lalwani A, Lam BL, Guy J. Gene therapy for leber hereditary optic neuropathy: initial results. Ophthalmology. 2016;123(3):558–70.
pubmed: 26606867
Guy J, Feuer WJ, Davis JL, Porciatti V, Gonzalez PJ, Koilkonda RD, Yuan H, Hauswirth WW, Lam BL. Gene therapy for leber hereditary optic neuropathy: low- and medium-dose visual results. Ophthalmology. 2017;124(11):1621–34.
pubmed: 28647203
pmcid: 5831379
Lam BL, Feuer WJ, Schiffman JC, Porciatti V, Vandenbroucke R, Rosa PR, Gregori G, Guy J. Trial end points and natural history in patients with g11778a leber hereditary optic neuropathy: preparation for gene therapy clinical trial. JAMA Ophthalmol. 2014;132(4):428–36.
pubmed: 24525545
pmcid: 4266137
Zhang Y, Yuan JJ, Liu HL, Tian Z, Liu SW, Li B. Three cases of leber’s hereditary optic neuropathy with rapid increase in visual acuity after gene therapy. Curr Gene Ther. 2019;19(2):134–8.
pubmed: 31237206
pmcid: 6806533
Yang S, Ma SQ, Wan X, He H, Pei H, Zhao MJ, Chen C, Wang DW, Dong XY, Yuan JJ, Li B. Long-term outcomes of gene therapy for the treatment of leber’s hereditary optic neuropathy. EBioMedicine. 2016;10:258–68.
pubmed: 27426279
pmcid: 5006665
Zhang Y, Li X, Yuan J, Tian Z, Liu H, Wang D, Li B. Prognostic factors for visual acuity in patients with leber’s hereditary optic neuropathy after raav2-nd4 gene therapy. Clin Exp Ophthalmol. 2019;47(6):774–8.
pubmed: 30968497
pmcid: 6767190
Liu HL, Yuan JJ, Zhang Y, Tian Z, Li X, Wang D, Du YY, Song L, Li B. Factors associated with rapid improvement in visual acuity in patients with leber's hereditary optic neuropathy after gene therapy. Acta Ophthalmol. 2020;98(6):e730–3.
pubmed: 32096343
Vignal C, Uretsky S, Fitoussi S, Galy A, Blouin L, Girmens JF, Bidot S, Thomasson N, Bouquet C, Valero S, Meunier S, et al. Safety of raav2/2-nd4 gene therapy for leber hereditary optic neuropathy. Ophthalmology. 2018;125(6):945–7.
pubmed: 29426586
Weiss JN, Levy S. Stem cell ophthalmology treatment study (scots): bone marrow derived stem cells in the treatment of dominant optic atrophy. Stem Cell Investig. 2019;6:41.
pubmed: 32039263
pmcid: 6987313
Johnson TV, Bull ND, Hunt DP, Marina N, Tomarev SI, Martin KR. Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma. Invest Ophthalmol Vis Sci. 2010;51(4):2051–9.
pubmed: 19933193
pmcid: 2868400
Levkovitch-Verbin H, Sadan O, Vander S, Rosner M, Barhum Y, Melamed E, Offen D, Melamed S. Intravitreal injections of neurotrophic factors secreting mesenchymal stem cells are neuroprotective in rat eyes following optic nerve transection. Invest Ophthalmol Vis Sci. 2010;51(12):6394–400.
pubmed: 20926814
Yu S, Tanabe T, Dezawa M, Ishikawa H, Yoshimura N. Effects of bone marrow stromal cell injection in an experimental glaucoma model. Biochem Biophys Res Commun. 2006;344(4):1071–9.
pubmed: 16643846
Li N, Li XR, Yuan JQ. Effects of bone-marrow mesenchymal stem cells transplanted into vitreous cavity of rat injured by ischemia/reperfusion. Graefes Arch Clin Exp Ophthalmol. 2009;247(4):503–14.
pubmed: 19084985
Zhao T, Li Y, Tang L, Li Y, Fan F, Jiang B. Protective effects of human umbilical cord blood stem cell intravitreal transplantation against optic nerve injury in rats. Graefes Arch Clin Exp Ophthalmol. 2011;249(7):1021–8.
pubmed: 21360302
Zwart I, Hill AJ, Al-Allaf F, Shah M, Girdlestone J, Sanusi AB, Mehmet H, Navarrete R, Navarrete C, Jen LS. Umbilical cord blood mesenchymal stromal cells are neuroprotective and promote regeneration in a rat optic tract model. Exp Neurol. 2009;216(2):439–48.
pubmed: 19320003
Lopez Sanchez MI, Crowston JG, Mackey DA, Trounce IA. Emerging mitochondrial therapeutic targets in optic neuropathies. Pharmacol Ther. 2016;165:132–52.
pubmed: 27288727
Johnson TV, DeKorver NW, Levasseur VA, Osborne A, Tassoni A, Lorber B, Heller JP, Villasmil R, Bull ND, Martin KR, Tomarev SI. Identification of retinal ganglion cell neuroprotection conferred by platelet-derived growth factor through analysis of the mesenchymal stem cell secretome. Brain. 2014;137(Pt 2):503–19.
pubmed: 24176979
Weiss JN, Levy S, Benes SC. Stem cell ophthalmology treatment study (scots): bone marrow-derived stem cells in the treatment of leber’s hereditary optic neuropathy. Neural Regen Res. 2016;11(10):1685–94.
pubmed: 27904503
pmcid: 5116851
Liu K, Ji K, Guo L, Wu W, Lu H, Shan P, Yan C. Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia-reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer. Microvasc Res. 2014;92:10–8.
pubmed: 24486322
Liu K, Guo L, Zhou Z, Pan M, Yan C. Mesenchymal stem cells transfer mitochondria into cerebral microvasculature and promote recovery from ischemic stroke. Microvasc Res. 2019;123:74–80.
pubmed: 30611747
Doudna JA. The promise and challenge of therapeutic genome editing. Nature. 2020;578(7794):229–36.
pubmed: 32051598
Naso MF, Tomkowicz B, Perry WL 3rd, Strohl WR. Adeno-associated virus (aav) as a vector for gene therapy. BioDrugs. 2017;31(4):317–34.
pubmed: 28669112
pmcid: 5548848
Civiletto G, Varanita T, Cerutti R, Gorletta T, Barbaro S, Marchet S, Lamperti C, Viscomi C, Scorrano L, Zeviani M. Opa1 overexpression ameliorates the phenotype of two mitochondrial disease mouse models. Cell Metab. 2015;21(6):845–54.
pubmed: 26039449
pmcid: 4457891
Varanita T, Soriano ME, Romanello V, Zaglia T, Quintana-Cabrera R, Semenzato M, Menabo R, Costa V, Civiletto G, Pesce P, Viscomi C, et al. The opa1-dependent mitochondrial cristae remodeling pathway controls atrophic, apoptotic, and ischemic tissue damage. Cell Metab. 2015;21(6):834–44.
pubmed: 26039448
pmcid: 4457892
Del Dotto V, Mishra P, Vidoni S, Fogazza M, Maresca A, Caporali L, McCaffery JM, Cappelletti M, Baruffini E, Lenaers G, Chan D, et al. Opa1 isoforms in the hierarchical organization of mitochondrial functions. Cell Rep. 2017;19(12):2557–71.
pubmed: 28636943
Alavi MV, Bette S, Schimpf S, Schuettauf F, Schraermeyer U, Wehrl HF, Ruttiger L, Beck SC, Tonagel F, Pichler BJ, Knipper M, et al. A splice site mutation in the murine opa1 gene features pathology of autosomal dominant optic atrophy. Brain. 2007;130(Pt 4):1029–42.
pubmed: 17314202
Davies VJ, Hollins AJ, Piechota MJ, Yip W, Davies JR, White KE, Nicols PP, Boulton ME, Votruba M. Opa1 deficiency in a mouse model of autosomal dominant optic atrophy impairs mitochondrial morphology, optic nerve structure and visual function. Hum Mol Genet. 2007;16(11):1307–18.
pubmed: 17428816
Sarzi E, Angebault C, Seveno M, Gueguen N, Chaix B, Bielicki G, Boddaert N, Mausset-Bonnefont AL, Cazevieille C, Rigau V, Renou JP, et al. The human opa1delttag mutation induces premature age-related systemic neurodegeneration in mouse. Brain. 2012;135(Pt 12):3599–613.
pubmed: 23250881
Zaninello M, Palikaras K, Naon D, Iwata K, Herkenne S, Quintana-Cabrera R, Semenzato M, Grespi F, Ross-Cisneros FN, Carelli V, Sadun AA, et al. Inhibition of autophagy curtails visual loss in a model of autosomal dominant optic atrophy. Nat Commun. 2020;11(1):4029.
pubmed: 32788597
pmcid: 7423926
Srivastava S, Moraes CT. Manipulating mitochondrial DNA heteroplasmy by a mitochondrially targeted restriction endonuclease. Hum Mol Genet. 2001;10(26):3093–9.
pubmed: 11751691
Bayona-Bafaluy MP, Blits B, Battersby BJ, Shoubridge EA, Moraes CT. Rapid directional shift of mitochondrial DNA heteroplasmy in animal tissues by a mitochondrially targeted restriction endonuclease. Proc Natl Acad Sci USA. 2005;102(40):14392–7.
pubmed: 16179392
Bacman SR, Gammage PA, Minczuk M, Moraes CT. Manipulation of mitochondrial genes and mtdna heteroplasmy. Methods Cell Biol. 2020;155:441–87.
pubmed: 32183972
Zekonyte U, Bacman SR, Moraes CT. DNA-editing enzymes as potential treatments for heteroplasmic mtdna diseases. J Intern Med. 2020;287(6):685–97.
pubmed: 32176378
Bacman SR, Moraes CT. Transmitochondrial technology in animal cells. Methods Cell Biol. 2007;80:503–24.
pubmed: 17445711
Gammage PA, Rorbach J, Vincent AI, Rebar EJ, Minczuk M. Mitochondrially targeted zfns for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMBO Mol Med. 2014;6(4):458–66.
pubmed: 24567072
pmcid: 3992073
Hashimoto M, Bacman SR, Peralta S, Falk MJ, Chomyn A, Chan DC, Williams SL, Moraes CT. Mitotalen: a general approach to reduce mutant mtdna loads and restore oxidative phosphorylation function in mitochondrial diseases. Mol Ther. 2015;23(10):1592–9.
pubmed: 26159306
pmcid: 4817924
Gammage PA, Viscomi C, Simard ML, Costa ASH, Gaude E, Powell CA, Van Haute L, McCann BJ, Rebelo-Guiomar P, Cerutti R, Zhang L, et al. Genome editing in mitochondria corrects a pathogenic mtdna mutation in vivo. Nat Med. 2018;24(11):1691–5.
pubmed: 30250142
pmcid: 6225988
Bacman SR, Kauppila JHK, Pereira CV, Nissanka N, Miranda M, Pinto M, Williams SL, Larsson NG, Stewart JB, Moraes CT. Mitotalen reduces mutant mtdna load and restores trna(ala) levels in a mouse model of heteroplasmic mtdna mutation. Nat Med. 2018;24(11):1696–700.
pubmed: 30250143
pmcid: 6942693
Loutre R, Heckel AM, Smirnova A, Entelis N, Tarassov I. Can mitochondrial DNA be crisprized: pro and contra. IUBMB Life. 2018;70(12):1233–9.
pubmed: 30184317
Ledford H. Scientists make precise gene edits to mitochondrial DNA for first time. Nature. 2020;583(7816):343.
pubmed: 32641792
Richardson J, Irving L, Hyslop LA, Choudhary M, Murdoch A, Turnbull DM, Herbert M. Concise reviews: assisted reproductive technologies to prevent transmission of mitochondrial DNA disease. Stem Cells. 2015;33(3):639–45.
pubmed: 25377180
pmcid: 4359624
Wolf DP, Mitalipov N, Mitalipov S. Mitochondrial replacement therapy in reproductive medicine. Trends Mol Med. 2015;21(2):68–76.
pubmed: 25573721
Hyslop LA, Blakeley P, Craven L, Richardson J, Fogarty NM, Fragouli E, Lamb M, Wamaitha SE, Prathalingam N, Zhang Q, O’Keefe H, et al. Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature. 2016;534(7607):383–6.
pubmed: 27281217
pmcid: 5131843
Tachibana M, Amato P, Sparman M, Woodward J, Sanchis DM, Ma H, Gutierrez NM, Tippner-Hedges R, Kang E, Lee HS, Ramsey C, et al. Towards germline gene therapy of inherited mitochondrial diseases. Nature. 2013;493(7434):627–31.
pubmed: 23103867
Paull D, Emmanuele V, Weiss KA, Treff N, Stewart L, Hua H, Zimmer M, Kahler DJ, Goland RS, Noggle SA, Prosser R, et al. Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants. Nature. 2013;493(7434):632–7.
pubmed: 23254936
Wang T, Sha H, Ji D, Zhang HL, Chen D, Cao Y, Zhu J. Polar body genome transfer for preventing the transmission of inherited mitochondrial diseases. Cell. 2014;157(7):1591–604.
pubmed: 24949971
Russell OM, Gorman GS, Lightowlers RN, Turnbull DM. Mitochondrial diseases: hope for the future. Cell. 2020;181(1):168–88.
pubmed: 32220313
Zhang J, Liu H, Luo S, Lu Z, Chavez-Badiola A, Liu Z, Yang M, Merhi Z, Silber SJ, Munne S, Konstantinidis M, et al. Live birth derived from oocyte spindle transfer to prevent mitochondrial disease. Reprod Biomed Online. 2017;34(4):361–8.
pubmed: 28385334
Reardon S. Genetic details of controversial “three-parent baby” revealed. Nature. 2017;544(7648):17–8.
pubmed: 28383008
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.
pubmed: 16904174
pmcid: 16904174
Shi Y, Inoue H, Wu JC, Yamanaka S. Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov. 2017;16(2):115–30.
pubmed: 27980341
Kruczek K, Swaroop A. Pluripotent stem cell-derived retinal organoids for disease modeling and development of therapies. Stem Cells. 2020;38(10):1206–15.
pubmed: 32506758
pmcid: 7586922
Jin ZB, Gao ML, Deng WL, Wu KC, Sugita S, Mandai M, Takahashi M. Stemming retinal regeneration with pluripotent stem cells. Prog Retin Eye Res. 2019;69:38–56.
pubmed: 30419340
Fligor CM, Huang KC, Lavekar SS, VanderWall KB, Meyer JS. Differentiation of retinal organoids from human pluripotent stem cells. Methods Cell Biol. 2020;159:279–302.
pubmed: 32586447
Cowan CS, Renner M, De Gennaro M, Gross-Scherf B, Goldblum D, Hou Y, Munz M, Rodrigues TM, Krol J, Szikra T, Cuttat R, et al. Cell types of the human retina and its organoids at single-cell resolution. Cell. 2020;182(6):1623–40 (e1634).
pubmed: 32946783
pmcid: 7505495
Laha B, Stafford BK, Huberman AD. Regenerating optic pathways from the eye to the brain. Science. 2017;356(6342):1031–4.
pubmed: 28596336
pmcid: 6333302
Kang E, Wang X, Tippner-Hedges R, Ma H, Folmes CD, Gutierrez NM, Lee Y, Van Dyken C, Ahmed R, Li Y, Koski A, et al. Age-related accumulation of somatic mitochondrial DNA mutations in adult-derived human ipscs. Cell Stem Cell. 2016;18(5):625–36.
Perales-Clemente E, Cook AN, Evans JM, Roellinger S, Secreto F, Emmanuele V, Oglesbee D, Mootha VK, Hirano M, Schon EA, Terzic A, et al. Natural underlying mtdna heteroplasmy as a potential source of intra-person hipsc variability. EMBO J. 2016;35(18):1979–90.
pubmed: 27436875
pmcid: 5282833
Payne BA, Wilson IJ, Yu-Wai-Man P, Coxhead J, Deehan D, Horvath R, Taylor RW, Samuels DC, Santibanez-Koref M, Chinnery PF. Universal heteroplasmy of human mitochondrial DNA. Hum Mol Genet. 2013;22(2):384–90.
pubmed: 23077218
Yang TC, Yarmishyn AA, Yang YP, Lu PC, Chou SJ, Wang ML, Lin TC, Hwang DK, Chou YB, Chen SJ, Yu WK, et al. Mitochondrial transport mediates survival of retinal ganglion cells in affected lhon patients. Hum Mol Genet. 2020;29(9):1454–64.
pubmed: 32277753
Chen J, Riazifar H, Guan MX, Huang T. Modeling autosomal dominant optic atrophy using induced pluripotent stem cells and identifying potential therapeutic targets. Stem Cell Res Ther. 2016;7:2.
pubmed: 26738566
pmcid: 4704249
Garone C, Viscomi C. Towards a therapy for mitochondrial disease: an update. Biochem Soc Trans. 2018;46(5):1247–61.
pubmed: 30301846
pmcid: 6195631
Johnson SC, Yanos ME, Kayser EB, Quintana A, Sangesland M, Castanza A, Uhde L, Hui J, Wall VZ, Gagnidze A, Oh K, et al. Mtor inhibition alleviates mitochondrial disease in a mouse model of leigh syndrome. Science. 2013;342(6165):1524–8.
pubmed: 24231806
pmcid: 4055856
Dai Y, Zheng K, Clark J, Swerdlow RH, Pulst SM, Sutton JP, Shinobu LA, Simon DK. Rapamycin drives selection against a pathogenic heteroplasmic mitochondrial DNA mutation. Hum Mol Genet. 2014;23(3):637–47.
pubmed: 24101601
Cerutti R, Pirinen E, Lamperti C, Marchet S, Sauve AA, Li W, Leoni V, Schon EA, Dantzer F, Auwerx J, Viscomi C, et al. Nad(+)-dependent activation of sirt1 corrects the phenotype in a mouse model of mitochondrial disease. Cell Metab. 2014;19(6):1042–9.
pubmed: 24814483
pmcid: 4051987
Pirinen E, Auranen M, Khan NA, Brilhante V, Urho N, Pessia A, Hakkarainen A, Kuula J, Heinonen U, Schmidt MS, Haimilahti K, et al. Niacin cures systemic nad(+) deficiency and improves muscle performance in adult-onset mitochondrial myopathy. Cell Metab. 2020;31(6):1078–90 (e1075).
pubmed: 32386566
Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of nad-boosting molecules: the in vivo evidence. Cell Metab. 2018;27(3):529–47.
pubmed: 29514064
pmcid: 6342515
Schondorf DC, Ivanyuk D, Baden P, Sanchez-Martinez A, De Cicco S, Yu C, Giunta I, Schwarz LK, Di Napoli G, Panagiotakopoulou V, Nestel S, et al. The nad+ precursor nicotinamide riboside rescues mitochondrial defects and neuronal loss in ipsc and fly models of parkinson’s disease. Cell Rep. 2018;23(10):2976–88.
pubmed: 29874584
Levin LA. Neuroprotection in optic neuropathy. Asia Pac J Ophthalmol (Phila). 2018;7(4):246–50.
Solano EC, Kornbrust DJ, Beaudry A, Foy JW, Schneider DJ, Thompson JD. Toxicological and pharmacokinetic properties of qpi-1007, a chemically modified synthetic sirna targeting caspase 2 mrna, following intravitreal injection. Nucleic Acid Ther. 2014;24(4):258–66.
pubmed: 25054518
Rath EZ, Hazan Z, Adamsky K, Solomon A, Segal ZI, Levin LA. Randomized controlled phase 2a study of rph201 in previous nonarteritic anterior ischemic optic neuropathy. J Neuroophthalmol. 2019;39(3):291–8.
pubmed: 31430268
pmcid: 6705418
Villoslada P, Vila G, Colafrancesco V, Moreno B, Fernandez-Diez B, Vazquez R, Pertsovskaya I, Zubizarreta I, Pulido-Valdeolivas I, Messeguer J, Vendrell-Navarro G, et al. Axonal and myelin neuroprotection by the peptoid bn201 in brain inflammation. Neurotherapeutics. 2019;16(3):808–27.
pubmed: 30815844
pmcid: 6694325