LINC00174 is a novel prognostic factor in thymic epithelial tumors involved in cell migration and lipid metabolism.
Apoptosis
Biomarkers, Tumor
/ genetics
Carrier Proteins
/ genetics
Cell Cycle Proteins
/ genetics
Cell Movement
Cell Proliferation
Gene Expression Profiling
Gene Expression Regulation, Neoplastic
Humans
Lipid Metabolism
Neoplasms, Glandular and Epithelial
/ genetics
Prognosis
RNA, Long Noncoding
/ genetics
Survival Rate
Thymus Neoplasms
/ genetics
Tumor Cells, Cultured
Journal
Cell death & disease
ISSN: 2041-4889
Titre abrégé: Cell Death Dis
Pays: England
ID NLM: 101524092
Informations de publication
Date de publication:
07 11 2020
07 11 2020
Historique:
received:
15
05
2020
accepted:
26
10
2020
revised:
23
10
2020
entrez:
8
11
2020
pubmed:
9
11
2020
medline:
8
9
2021
Statut:
epublish
Résumé
Long non-coding RNAs are emerging as new molecular players involved in many biological processes, such as proliferation, apoptosis, cell cycle, migration, and differentiation. Their aberrant expression has been reported in variety of diseases. The aim of this study is the identification and functional characterization of clinically relevant lncRNAs responsible for the inhibition of miR-145-5p, a key tumor suppressor in thymic epithelial tumors (TETs). Starting from gene expression analysis by microarray in a cohort of fresh frozen thymic tumors and normal tissues, we identified LINC00174 as upregulated in TET. Interestingly, LINC00174 expression is positively correlated with a 5-genes signature in TETs. Survival analyses, performed on the TCGA dataset, showed that LINC00174 and its associated 5-genes signature are prognostic in TETs. Specifically, we show that LINC00174 favors the expression of SYBU, FEM1B, and SCD5 genes by sponging miR-145-5p, a well-known tumor suppressor microRNA downregulated in a variety of tumors, included TETs. Functionally, LINC00174 impacts on cell migration and lipid metabolism. Specifically, SCD5, one of the LINC00174-associated genes, is implicated in the control of lipid metabolism and promotes thymic cancer cells migration. Our study highlights that LINC00174 and its associated gene signature are relevant prognostic indicators in TETs. Of note, we here show that a key controller of lipid metabolism, SCD5, augments the migration ability of TET cells, creating a link between lipids and motility, and highlighting these pathways as relevant targets for the development of novel therapeutic approaches for TET.
Identifiants
pubmed: 33161413
doi: 10.1038/s41419-020-03171-9
pii: 10.1038/s41419-020-03171-9
pmc: PMC7648846
doi:
Substances chimiques
Biomarkers, Tumor
0
Carrier Proteins
0
Cell Cycle Proteins
0
FEM1B protein, human
0
RNA, Long Noncoding
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
959Références
Mol Cancer. 2020 Apr 15;19(1):77
pubmed: 32295598
Sci Rep. 2014 Aug 15;4:6088
pubmed: 25124853
Nat Med. 2015 Nov;21(11):1253-61
pubmed: 26540387
Oncotarget. 2016 Sep 13;7(37):60155-60168
pubmed: 27517498
Lab Invest. 2009 Nov;89(11):1221-8
pubmed: 19752858
Int J Cancer. 2008 Jun 15;122(12):2719-25
pubmed: 18360827
Cancer. 1981 Dec 1;48(11):2485-92
pubmed: 7296496
Oncotarget. 2018 Jan 9;9(7):7567-7581
pubmed: 29484133
Cancer Discov. 2011 Oct;1(5):391-407
pubmed: 22096659
Trends Genet. 2018 Feb;34(2):142-157
pubmed: 29249332
Nat Rev Genet. 2014 Jan;15(1):7-21
pubmed: 24296535
J Thorac Oncol. 2015 Oct;10(10):1383-95
pubmed: 26295375
Cell Biochem Funct. 2020 Oct;38(7):859-869
pubmed: 32128852
Nucleic Acids Res. 2012 Aug;40(14):6391-400
pubmed: 22492512
Cell. 2011 Mar 4;144(5):646-74
pubmed: 21376230
Nature. 2014 Jan 16;505(7483):344-52
pubmed: 24429633
J Lipid Res. 2018 Feb;59(2):298-311
pubmed: 29208696
Nat Rev Genet. 2016 Jan;17(1):47-62
pubmed: 26666209
Eur Urol. 2014 Jun;65(6):1140-51
pubmed: 24373479
Biochim Biophys Acta Mol Cell Biol Lipids. 2017 Oct;1862(10 Pt B):1221-1232
pubmed: 28754637
PLoS One. 2017 Feb 10;12(2):e0171661
pubmed: 28187158
Physiol Rev. 2008 Apr;88(2):489-513
pubmed: 18391171
Front Oncol. 2019 Jul 09;9:570
pubmed: 31338324
Oncotarget. 2015 Nov 17;6(36):38719-36
pubmed: 26451612
Mol Cell. 2013 Oct 10;52(1):101-12
pubmed: 24055342
J Thorac Oncol. 2011 Mar;6(3):614-23
pubmed: 21266921
Cancer Res. 2011 Oct 15;71(20):6320-6
pubmed: 21862635
Cell. 2011 Oct 14;147(2):358-69
pubmed: 22000014
Cell Death Differ. 2013 Nov;20(11):1558-68
pubmed: 23933812
Biomed Res Int. 2014;2014:546149
pubmed: 25105128
Oncogene. 2015 Sep 24;34(39):5003-11
pubmed: 25619839
Cancer Cell. 2018 Feb 12;33(2):244-258.e10
pubmed: 29438696
Front Oncol. 2017 Mar 14;7:40
pubmed: 28352611
Nature. 2010 Apr 15;464(7291):1071-6
pubmed: 20393566
Gene. 2018 Aug 5;666:64-71
pubmed: 29729381
Front Genet. 2020 Mar 31;11:277
pubmed: 32296461
Cancer Res. 2011 Jun 1;71(11):3852-62
pubmed: 21558391
Cancer Biol Ther. 2011 Dec 1;12(11):939-48
pubmed: 22057267
Mol Cancer. 2017 May 10;16(1):88
pubmed: 28486946
J Exp Clin Cancer Res. 2019 Sep 6;38(1):395
pubmed: 31492194
J Thorac Oncol. 2014 Sep;9(9 Suppl 2):S65-72
pubmed: 25396314
Anticancer Res. 2008 Nov-Dec;28(6A):3671-6
pubmed: 19189648
Cancers (Basel). 2013 Apr 26;5(2):462-90
pubmed: 24216986
Ann Oncol. 2015 Sep;26 Suppl 5:v40-55
pubmed: 26314779
J Thorac Oncol. 2014 May;9(5):596-611
pubmed: 24722150
Oncotarget. 2017 Apr 25;8(17):29487-29500
pubmed: 28412757
Oncotarget. 2018 May 11;9(36):24364-24380
pubmed: 29849946
BMC Syst Biol. 2014 Jul 17;8:83
pubmed: 25033876
Lung Cancer. 2014 Aug;85(2):197-204
pubmed: 24863004
Nat Cell Biol. 2019 May;21(5):542-551
pubmed: 31048766
Antioxid Redox Signal. 2018 Sep 20;29(9):922-935
pubmed: 28793797