Calcium Ion Chelation Preserves Platelet Function During Cold Storage.
Animals
Apoptosis
/ drug effects
Blood Platelets
/ drug effects
Blood Preservation
Calcium
/ blood
Calcium Chelating Agents
/ pharmacology
Cold Temperature
Egtazic Acid
/ pharmacology
Female
Humans
Integrins
/ blood
Male
Mice, Inbred C57BL
Mice, Knockout
Platelet Activation
/ drug effects
Platelet Transfusion
Time Factors
bleeding time
cold temperature apoptosis
hemostatics
platelet activation
platelet transfusion
Journal
Arteriosclerosis, thrombosis, and vascular biology
ISSN: 1524-4636
Titre abrégé: Arterioscler Thromb Vasc Biol
Pays: United States
ID NLM: 9505803
Informations de publication
Date de publication:
01 2021
01 2021
Historique:
pubmed:
13
11
2020
medline:
2
2
2021
entrez:
12
11
2020
Statut:
ppublish
Résumé
Platelet transfusion is a life-saving therapy to prevent or treat bleeding in patients with thrombocytopenia or platelet dysfunction. However, for >6 decades, safe and effective strategies for platelet storage have been an impediment to widespread use of platelet transfusion. Refrigerated platelets are cleared rapidly from circulation, precluding cold storage of platelets for transfusion. Consequently, platelets are stored at room temperature with an upper limit of 5 days due to risks of bacterial contamination and loss of platelet function. This practice severely limits platelet availability for transfusion. This study is to identify the mechanism of platelet clearance after cold storage and develop a method for platelet cold storage. Approach and Results: We found that rapid clearance of cold-stored platelets was largely due to integrin activation and apoptosis. Deficiency of integrin β3 or caspase-3 prolonged cold-stored platelets in circulation. Pretreatment of platelets with EGTA, a cell impermeable calcium ion chelator, reversely inhibited cold storage-induced platelet activation and consequently prolonged circulation of cold-stored platelets. Moreover, transfusion of EGTA-treated, cold-stored platelets, but not room temperature-stored platelets, into the mice deficient in glycoprotein Ibα significantly shortened tail-bleeding times and diminished blood loss. Integrin activation and apoptosis is the underlying mechanism of rapid clearance of platelets after cold storage. Addition of a cell impermeable calcium ion chelator to platelet products is potentially a simple and effective method to enable cold storage of platelets for transfusion.
Identifiants
pubmed: 33176450
doi: 10.1161/ATVBAHA.120.314879
pmc: PMC8158249
mid: NIHMS1642208
doi:
Substances chimiques
Calcium Chelating Agents
0
Integrins
0
Egtazic Acid
526U7A2651
Calcium
SY7Q814VUP
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
234-249Subventions
Organisme : NHLBI NIH HHS
ID : K99 HL145117
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM132443
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL142640
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL146744
Pays : United States
Références
Blood Transfus. 2010 Jun;8 Suppl 3:s73-81
pubmed: 20606754
Blood. 1978 Sep;52(3):505-13
pubmed: 678668
J Clin Invest. 2017 Dec 1;127(12):4338-4351
pubmed: 29083324
J Biol Chem. 2001 Jul 6;276(27):24751-9
pubmed: 11328807
Transfusion. 1973 Mar;13(2):61-8
pubmed: 4695593
Ann Intern Med. 2015 Feb 3;162(3):205-13
pubmed: 25383671
Cell. 1998 Sep 4;94(5):657-66
pubmed: 9741630
Nat Med. 2009 Nov;15(11):1273-80
pubmed: 19783995
J Biol Chem. 2005 May 6;280(18):18025-32
pubmed: 15741160
Blood. 2012 Feb 2;119(5):1263-73
pubmed: 22101895
Arterioscler Thromb Vasc Biol. 2017 Dec;37(12):2271-2279
pubmed: 29097365
Nat Commun. 2016 Sep 27;7:12863
pubmed: 27670775
Blood. 2003 Dec 1;102(12):4229-35
pubmed: 12907434
QRB Qual Rev Bull. 1977 Dec;3(12):17,22
pubmed: 414187
Transfusion. 1976 Jan-Feb;16(1):20-3
pubmed: 1251454
Blood. 2010 Aug 12;116(6):869-77
pubmed: 20435885
Cell. 2003 Jan 10;112(1):87-97
pubmed: 12526796
Transfusion. 2017 Dec;57(12):2836-2844
pubmed: 28880362
J Clin Invest. 2001 Jun;107(12):1591-8
pubmed: 11413167
Blood. 2009 Aug 20;114(8):1645-54
pubmed: 19520807
Transfusion. 2004 Mar;44(3):359-63
pubmed: 14996192
Blood. 2018 Apr 5;131(14):1512-1521
pubmed: 29475962
Blood. 1954 Jun;9(6):602-8
pubmed: 13160109
Blood. 2002 Sep 15;100(6):2102-7
pubmed: 12200373
Clin Diagn Lab Immunol. 2000 Jul;7(4):578-83
pubmed: 10882655
Cell Death Differ. 2002 Jan;9(1):3-5
pubmed: 11803369
Semin Thromb Hemost. 2013 Sep;39(6):656-62
pubmed: 23929303
Transfus Med Rev. 2018 Apr 17;:
pubmed: 29751949
Biochim Biophys Acta. 1999 Jan 12;1416(1-2):349-60
pubmed: 9889395
Transfus Clin Biol. 2017 Sep;24(3):277-284
pubmed: 28673502
J Lab Clin Med. 1979 Aug;94(2):370-80
pubmed: 458253
Blood. 1967 Nov;30(5):625-35
pubmed: 6073858
J Clin Invest. 2013 Nov;123(11):4564-5
pubmed: 24177466
Clin Lab Med. 2010 Jun;30(2):475-87
pubmed: 20513565
J Med Genet. 2009 Aug;46(8):497-510
pubmed: 19505876
Vox Sang. 1970 Mar;18(3):204-15
pubmed: 5445621
Am J Cardiol. 2000 Feb 15;85(4):435-40
pubmed: 10728946
J Thromb Haemost. 2010 Sep;8(9):2032-41
pubmed: 20586915
Nat Med. 2015 Jan;21(1):47-54
pubmed: 25485912
N Engl J Med. 1969 May 15;280(20):1094-8
pubmed: 5778424
Science. 2003 Sep 12;301(5639):1531-4
pubmed: 12970565
Transfusion. 1976 Nov-Dec;16(6):571-9
pubmed: 11576
Transfusion. 2001 Dec;41(12):1493-9
pubmed: 11778062
J Biol Chem. 1985 Jul 5;260(13):7875-81
pubmed: 2409078
Blood. 2002 Mar 15;99(6):2054-9
pubmed: 11877279
Blood. 1971 Jul;38(1):39-48
pubmed: 4254206
J Biol Chem. 2001 Jul 6;276(27):25121-6
pubmed: 11352922
Br J Haematol. 1976 Nov;34(3):403-19
pubmed: 10956
Blood. 1995 Apr 1;85(7):1796-804
pubmed: 7703486