Elevated co

chlorophyte climate change community cyanobacteria freshwater nuisance algae

Journal

Journal of phycology
ISSN: 1529-8817
Titre abrégé: J Phycol
Pays: United States
ID NLM: 9882935

Informations de publication

Date de publication:
02 2021
Historique:
received: 29 11 2019
accepted: 12 10 2020
pubmed: 17 11 2020
medline: 21 4 2021
entrez: 16 11 2020
Statut: ppublish

Résumé

Rising atmospheric CO

Identifiants

pubmed: 33191502
doi: 10.1111/jpy.13104
doi:

Substances chimiques

Carbon Dioxide 142M471B3J

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

324-334

Informations de copyright

© 2020 Phycological Society of America.

Références

Aguilera, A., Gómez, E. B., Kaštovský, J., Echenique, R. O. & Salerno, G. L. 2018. The polyphasic analysis of two native Raphidiopsis isolates supports the unification of the genera Raphidiopsis, Cylindrospermopsis (Nostocales, Cyanobacteria). Phycologia 57:130-46.
Banavar, J. R., Damuth, J., Maritan, A. & Rinaldo, A. 2002. Supply-demand balance and metabolic scaling. Proc. Natl. Acad. Sci. USA 99:10506-9.
Beardall, J. 1991. Effects of photon flux density on the ‘CO2-concentrating mechanism’ of the cyanobacterium Anabaena variabilis. J. Plankton Res. 13:133-41.
Beardall, J., Allen, D., Bragg, J., Finkel, Z. V., Flynn, K. J., Quigg, A., Rees, T. A. V., Richardson, A. & Raven, J. A. 2009. Allometry and stoichiometry of unicellular, colonial and multicellular phytoplankton. New Phytol. 181:295-309.
Beardall, J. & Giordano, M. 2002. Ecological implications of microalgal and cyanobacterial CO2 concentrating mechanisms, and their regulation. Funct. Plant Biol. 29:335-47.
Beardall, J., Johnston, A. & Raven, J. 1998. Environmental regulation of CO2-concentrating mechanisms in microalgae. Can. J. Bot. 76:1010-17.
Beardall, J. & Raven, J. A. 2004. The potential effects of global climate change on microalgal photosynthesis, growth and ecology. Phycologia 43:26-40.
Bown, A. W. 1985. CO2 and intracellular pH. Plant Cell Environ. 8:459-65.
Brandenburg, K. M., Velthuis, M. & Van de Waal, D. B. 2019. Meta-analysis reveals enhanced growth of marine harmful algae from temperate regions with warming and elevated CO2 levels. Global Change Biol. 25:2607-18.
Briand, J. F., Leboulanger, C., Humbert, J. F., Bernard, C. & Dufour, P. 2004. Cylindrospermopsis raciborskii (Cyanobacteria) invasion at mid-latitudes: Selection, wide physiological tolerance, or global warming? J. Phycol. 40:231-38.
Burford, M. A., Beardall, J., Willis, A., Orr, P. T., Magalhaes, V. F., Rangel, L. M., Azevedo, S. M. F. O. E. & Neilan, B. A. 2016. Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae 54:44-53.
Burkhardt, S., Amoroso, G., Riebesell, U. & Sultemeyer, D. 2001. CO2 and HCO3− uptake in marine diatoms acclimated to different CO2 concentrations. Limnol. Oceanogr. 46:1378-91.
Cheng, X., Shi, H., Adams, C. D., Timmons, T. & Ma, Y. 2009. Effects of oxidative and physical treatments on inactivation of Cylindrospermopsis raciborskii and removal of cylindrospermopsin. Water Sci. Technol. 60:689-97.
Clark, D. R. & Flynn, K. J. 2000. The relationship between the dissolved inorganic carbon concentration and growth rate in marine phytoplankton. Proc. R. Soc. Lond. B. Biol. Sci. 267:953-59.
Clement, R., Jensen, E., Prioretti, L., Maberly, S. C. & Gontero, B. 2017. Diversity of CO2-concentrating mechanisms and responses to CO2 concentration in marine and freshwater diatoms. J. Exp. Bot. 68:3925-35.
Collins, S. & Bell, G. 2004. Phenotyptic consequences of 1,000 generations of selection at elevated CO2 in a green alga. Nature 431:566.
Czerny, J., Ramos, J. B. E. & Riebesell, U. 2009. Influence of elevated CO2 concentrations on cell division and nitrogen fixation rates in the bloom-forming cyanobacterium Nodularia spumigena. Biogeosciences 6:1865-75.
Dickson, A. & Riley, J. 1979. The estimation of acid dissociation constants in seawater media from potentionmetric titrations with strong base. I. The ionic product of water-Kw. Mar. Chem. 7:89-99.
Eilers, P. & Peeters, J. 1988. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol. Model. 42:199-215.
Felip, M. & Catalan, J. 2000. The relationship between phytoplankton biovolume and chlorophyll in a deep oligotrophic lake: decoupling in their spatial and temporal maxima. J. Plankton Res. 22:91-106.
Finkel, Z. V., Beardall, J., Flynn, K. J., Quigg, A., Rees, T. A. V. & Raven, J. A. 2009. Phytoplankton in a changing world: cell size and elemental stoichiometry. J. Plankton Res. 32:119-37.
Finkel, Z. V. & Irwin, A. J. 2000. Modeling size-dependent photosynthesis: light absorption and the allometric rule. J. Theor. Biol. 204:361-69.
Flynn, K. J. 1998. Estimation of kinetic parameters for the transport of nitrate and ammonium into marine phytoplankton. Mar. Ecol. Prog. Ser. 169:13-28.
Flynn, K. J., Page, S., Wood, G. & Hipkin, C. R. 1999. Variations in the maximum transport rates for ammonium and nitrate in the prymnesiophyte Emiliania huxleyi and the raphidophyte Heterosigma carterae. J. Plankton Res. 21:355-71.
Gao, K. & Campbell, D. A. 2014. Photophysiological responses of marine diatoms to elevated CO2 and decreased pH: a review. Funct. Plant Biol. 41:449-59.
Giordano, M., Beardall, J. & Raven, J. A. 2005. CO2 concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Biol. 56:99-131.
Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U. & Zohary, T. 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35:403-24.
Huisman, J. 1999. Population dynamics of light-limited phytoplankton: microcosm experiments. Ecology 80:202-10.
Ji, X., Verspagen, J. M., Stomp, M. & Huisman, J. 2017. Competition between cyanobacteria and green algae at low versus elevated CO2: who will win, and why? J. Exp. Bot. 68:3815-28.
Lines, T. & Beardall, J. 2018. Carbon acquisition characteristics of six microalgal species isolated from a subtropical reservoir: potential implications for species succession. J. Phycol. 54:599-607.
Low-Décarie, E., Bell, G. & Fussmann, G. F. 2015. CO2 alters community composition and response to nutrient enrichment of freshwater phytoplankton. Oecologia 177:875-83.
Low-Décarie, E., Fussmann, G. F. & Bell, G. 2011. The effect of elevated CO2 on growth and competition in experimental phytoplankton communities. Global Change Biol. 17:2525-35.
Low-Décarie, E., Jewell, M. D., Fussmann, G. F. & Bell, G. 2013. Long-term culture at elevated atmospheric CO2 fails to evoke specific adaptation in seven freshwater phytoplankton species. Proc. R. Soc. Lond. B. Biol. Sci. 280:20122598.
Mackereth, F. J. H., Heron, J. & Talling, J. F. 1978. Water Analysis: Some Revised Methods for Limnologists. Freshwater Biological Association, Ambleside, 120 pp.
Mangan, N. M., Flamholz, A., Hood, R. D., Milo, R. & Savage, D. F. 2016. pH determines the energetic efficiency of the cyanobacterial CO2 concentrating mechanism. Proc. Natl. Acad. Sci. USA 113:E5354-62.
McGregor, G. B. & Fabbro, L. D. 2000. Dominance of Cylindrospermopsis raciborskii (Nostocales, Cyanoprokaryota) in Queensland tropical and subtropical reservoirs: Implications for monitoring and management. Lakes Reserv. Res. Manage. 5:195-205.
Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., Kitoh, A. et al. 2007. Global climate projections. In Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. & Miller, H. L. [Eds.] Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp. 749-828.
Millero, F. J., Graham, T. B., Huang, F., Bustos-Serrano, H. & Pierrot, D. 2006. Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Mar. Chem. 100:80-94.
Neilan, B., Saker, M., Fastner, J., Törökné, A. & Burns, B. 2003. Phylogeography of the invasive cyanobacterium Cylindrospermopsis raciborskii. Mol. Ecol. 12:133-40.
Ogawa, T., Miyano, A. & Inoue, Y. 1985. Photosystem-I-driven inorganic carbon transport in the cyanobacterium, Anacystis nidulans. Biochim. Biophys. Acta 808:77-84.
Palmqvist, K., Sundblad, L. G., Wingsle, G. & Samuelsson, G. 1990. Acclimation of photosynthetic light reactions during induction of inorganic carbon accumulation in the green alga Chlamydomonas reinhardtii. Plant Physiol. 94:357-66.
Pierangelini, M., Stojkovic, S., Orr, P. T. & Beardall, J. 2014a. Elevated CO2 causes changes in the photosynthetic apparatus of a toxic cyanobacterium, Cylindrospermopsis raciborskii. J. Plant Physiol. 171:1091-98.
Pierangelini, M., Stojkovic, S., Orr, P. T. & Beardall, J. 2014b. Photosynthetic characteristics of two Cylindrospermopsis raciborskii strains differing in their toxicity. J. Phycol. 50:292-302.
Qiu, B. S. & Gao, K. S. 2002. Effects of CO2 enrichment on the bloom-forming cyanobacterium Microcystis aeruginosa (Cyanophyceae): Physiological responses and relationships with the availability of dissolved inorganic carbon. J. Phycol. 38:721-29.
Raven, J. A. & Beardall, J. 2014. CO2 concentrating mechanisms and environmental change. Aquat. Bot. 118:24-37.
Raven, J. A., Giordano, M., Beardall, J. & Maberly, S. C. 2011. Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change. Photosynthesis Res. 109:281-96.
Recknagel, F., Orr, P. T. & Cao, H. 2014. Inductive reasoning and forecasting of population dynamics of Cylindrospermopsis raciborskii in three sub-tropical reservoirs by evolutionary computation. Harmful Algae 31:26-34.
Riebesell, U. 2004. Effects of CO2 enrichment on marine phytoplankton. J. Oceanogr. 60:719-29.
Riebesell, U., Schulz, K. G., Bellerby, R. G. J., Botros, M., Fritsche, P., Meyerhoefer, M., Neill, C., Nondal, G., Oschlies, A., Wohlers, J. & Zoellner, E. 2007. Enhanced biological carbon consumption in a high CO2 ocean. Nature 450:545-8.
Rost, B., Riebesell, U., Burkhardt, S. & Sültemeyer, D. 2003. Carbon acquisition of bloom-forming marine phytoplankton. Limnol. Oceanogr. 48:55-67.
Sandrini, G., Ji, X., Verspagen, J. M., Tann, R. P., Slot, P. C., Luimstra, V. M., Schuurmans, J. M., Matthijs, H. C. & Huisman, J. 2016. Rapid adaptation of harmful cyanobacteria to rising CO2. Proc. Natl. Acad. Sci. USA 113:9315-20.
Sandrini, G., Matthijs, H. C. P., Verspagen, J. M. H., Muyzer, G. & Huisman, J. 2014. Genetic diversity of inorganic carbon uptake systems causes variation in CO2 response of the cyanobacterium Microcystis. ISME J. 8:589-600.
Schippers, P., Lurling, M. & Scheffer, M. 2004. Increase of atmospheric CO2 promotes phytoplankton productivity. Ecol. Lett. 7:446-51.
Smith, F. A. & Raven, J. A. 1979. Intracellular pH and its regulation. Ann. Rev. Plant Physiol. 30:289-311.
Spalding, M. H., Critchley, C. & Orgren, W. L. 1984. Influence of carbon dioxide concentration during growth on fluorescence induction characteristics of the green alga Chlamydomonas reinhardii. Photosynthesis Res. 5:169-76.
Spijkerman, E., Maberly, S. C. & Coesel, P. F. 2005. Carbon acquisition mechanisms by planktonic desmids and their link to ecological distribution. Can. J. Bot. 83:850-58.
Tsuji, Y., Nakajima, K. & Matsuda, Y. 2017. Molecular aspects of the biophysical CO2-concentrating mechanism and its regulation in marine diatoms. J. Exp. Bot. 68:3763-72.
Vadrucci, M., Mazziotti, C. & Fiocca, A. 2013. Cell biovolume and surface area in phytoplankton of Mediterranean transitional water ecosystems: methodological aspects. Transit. Water Bull. 7:100-23.
Van de Waal, D. B., Verspagen, J. M. H., Finke, J. F., Vournazou, V., Immers, A. K., Kardinaal, W. E. A., Tonk, L., Becker, S., Van Donk, E., Visser, P. M. & Huisman, J. 2011. Reversal in competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising CO2. ISME J. 5:1438-50.
Verschoor, A. M., Van Dijk, M. A., Huisman, J. & Van Donk, E. 2013. Elevated CO2 concentrations affect the elemental stoichiometry and species composition of an experimental phytoplankton community. Freshwat. Biol. 58:597-611.
Waite, A., Fisher, A., Thompson, P. A. & Harrison, P. J. 1997. Sinking rate versus cell volume relationships illuminate sinking rate control mechanisms in marine diatoms. Mar. Ecol. Prog. Ser. 157:97-108.
Weiss, R. F. 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem. 2:203-15.
West, G. B., Brown, J. H. & Enquist, B. J. 1999. The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284:1677-79.
Westrick, J. A., Szlag, D. C., Southwell, B. J. & Sinclair, J. 2010. A review of cyanobacteria and cyanotoxins removal/inactivation in drinking water treatment. Anal. Bioanal. Chem. 397:1705-14.
Willis, A., Chuang, A. W., Woodhouse, J. N., Neilan, B. A. & Burford, M. A. 2016. Intraspecific variation in growth, morphology and toxin quotas for the cyanobacterium, Cylindrospermopsis raciborskii. Toxicon 119:307-10.
Yang, Y. & Gao, K. 2003. Effects of CO2 concentrations on the freshwater microalgae, Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obliquus (Chlorophyta). J. Appl. Phycol. 15:379-89.

Auteurs

Thomas Lines (T)

The University of Adelaide, Waite Campus, Glen Osmond, South Australia, 5064, Australia.

Philip Orr (P)

Australian Rivers Institute, Griffith University, 170 Kessels Rd, Nathan, Queensland, 4111, Australia.

John Beardall (J)

School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Humans Australia Female Male Adult
Lakes Salinity Archaea Bacteria Microbiota

Classifications MeSH