Aleutian mink disease: Spatio-temporal variation of prevalence and influence on the feral American mink.
Neovison vison
Aleutian mink disease virus
body condition
pathogens
temporal fluctuation
Journal
Transboundary and emerging diseases
ISSN: 1865-1682
Titre abrégé: Transbound Emerg Dis
Pays: Germany
ID NLM: 101319538
Informations de publication
Date de publication:
Jul 2021
Jul 2021
Historique:
revised:
20
10
2020
received:
30
07
2020
accepted:
12
11
2020
pubmed:
17
11
2020
medline:
21
10
2021
entrez:
16
11
2020
Statut:
ppublish
Résumé
Pathogens are one of the factors driving wildlife population dynamics. The spread of pathogens in wildlife is currently highly related to the transmission of pathogens from farmed animals, which has increased with the constant development of farming. Here, we analysed the spatio-temporal variation in the prevalence of Aleutian mink disease virus (AMDV) antibodies in feral American mink (Neovison vison) populations in Poland (1,153 individuals from nine sites) in relation to mink farming intensity. AMDV was detected in feral mink at all study sites and the prevalence ranged from 0.461 in the northern region to 0.826 in the western region. Mink males and adults were infected more often than females and subadults; the infection was also more frequent during the mink breeding season than during non-breeding. The prevalence of AMDV changed non-linearly in consecutive years and the peak of prevalence was every 3-4 years. The predicted AMDV prevalence was low at sites where the number of farmed mink was also low and increased linearly with the increase in the number of mink kept on farms. The predicted AMDV prevalence at sites with low mink farming intensity strongly varied between years, whereas at sites with high mink farming intensity, the predicted prevalence did not change significantly. AMDV infection affected the mink's body condition and caused an increase in the size of the spleen, liver and kidneys. This study shows that Aleutian mink disease strongly affects feral mink but the spatio-temporal variation of its prevalence is complex and partly related to the transmission of the virus from farmed mink to feral populations. The study highlights the complexity of AMDV circulation in feral mink populations and implicates a potential spillover of the virus to native species.
Identifiants
pubmed: 33197283
doi: 10.1111/tbed.13928
pmc: PMC8359164
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2556-2570Subventions
Organisme : National Science Centre, Poland
ID : 2016/23/B/NZ8/01010
Informations de copyright
© 2020 The Authors. Transboundary and Emerging Diseases published by Wiley-VCH GmbH.
Références
Virus Res. 2019 Sep;270:197665
pubmed: 31306681
Biol Invasions. 2016;18(10):3047-3061
pubmed: 32355453
J Wildl Dis. 2016 Jan;52(1):22-32
pubmed: 26528576
Arch Gesamte Virusforsch. 1973;40(3):375-81
pubmed: 4633583
J Virol. 1988 Aug;62(8):2903-15
pubmed: 2839709
J Gen Virol. 2015 Jun;96(Pt 6):1423-1435
pubmed: 25667324
Infect Agents Dis. 1994 Dec;3(6):279-301
pubmed: 7889316
BMC Ecol. 2017 Dec 22;17(1):46
pubmed: 29273026
Proc Biol Sci. 2008 Aug 7;275(1644):1753-9
pubmed: 18448414
Virol J. 2015 Nov 02;12:180
pubmed: 26527402
J Gen Virol. 2019 Feb;100(2):227-236
pubmed: 30526739
Prog Med Virol. 1986;33:42-60
pubmed: 3018840
Virol J. 2017 Jun 21;14(1):119
pubmed: 28637462
Conserv Biol. 2010 Feb;24(1):302-11
pubmed: 19604296
PLoS One. 2014 Jan 13;9(1):e85598
pubmed: 24454897
Vet Microbiol. 2020 Jun;245:108705
pubmed: 32456821
Infect Immun. 1983 Sep;41(3):1016-23
pubmed: 6193063
Vet Parasitol. 2016 Mar 30;219:24-33
pubmed: 26921035
Transbound Emerg Dis. 2021 Jul;68(4):2556-2570
pubmed: 33197283
PLoS One. 2011;6(7):e21693
pubmed: 21789177
Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):1464-9
pubmed: 25605919
Trends Ecol Evol. 2008 Jan;23(1):20-5
pubmed: 18160175
J Infect Dis. 1964 Oct;114:341-5
pubmed: 14217934
Euro Surveill. 2020 Jun;25(23):
pubmed: 32553059
J Wildl Dis. 2001 Jan;37(1):138-44
pubmed: 11272488
Front Microbiol. 2015 Oct 12;6:1119
pubmed: 26528267
Vet Microbiol. 2009 Jan 13;133(3):229-38
pubmed: 18799272
Mol Ecol. 2009 Apr;18(8):1601-15
pubmed: 19302354
Vet Rec. 2012 Apr 7;170(14):362
pubmed: 22447458
Vet Microbiol. 2014 Jan 31;168(2-4):420-7
pubmed: 24389253
Ann Agric Environ Med. 2017 Sep 21;24(3):366-371
pubmed: 28954472
J Vet Diagn Invest. 2015 May;27(3):287-94
pubmed: 25862712
Acta Vet Scand Suppl. 2001;94:89-91
pubmed: 11875858
J Virol. 1994 Feb;68(2):738-49
pubmed: 8289377
J Wildl Dis. 2004 Jul;40(3):394-402
pubmed: 15465705
Vet Microbiol. 2019 Apr;231:45-47
pubmed: 30955822
J Virol. 1999 Oct;73(10):8713-9
pubmed: 10482625
Emerg Infect Dis. 2009 Dec;15(12):2040-2
pubmed: 19961696
Vet Rec. 2001 Oct 20;149(16):485-8
pubmed: 11700927
PLoS One. 2015 Mar 30;10(3):e0122194
pubmed: 25822750
Prev Vet Med. 2012 Oct 1;106(3-4):332-8
pubmed: 22497690
J Clin Microbiol. 2009 Mar;47(3):796-9
pubmed: 19116358
Acta Vet Scand. 2016 Jun 01;58(1):35
pubmed: 27250118
Microb Pathog. 2020 Feb;139:103908
pubmed: 31830583
PLoS One. 2015 Oct 07;10(10):e0139852
pubmed: 26444280
J Virol. 1996 Feb;70(2):852-61
pubmed: 8551624
Emerg Infect Dis. 2014 Dec;20(12):2166-8
pubmed: 25417710
J Wildl Dis. 2012 Apr;48(2):497-502
pubmed: 22493130
Mol Ecol. 2009 Mar;18(6):1175-86
pubmed: 19243512
Acta Vet Scand. 2013 Feb 08;55:10
pubmed: 23394546
Nature. 2003 Feb 6;421(6923):628-30
pubmed: 12571595
Exp Parasitol. 2020 Jan;208:107807
pubmed: 31751558
Trends Ecol Evol. 2004 Jul;19(7):385-90
pubmed: 16701290
Sci Rep. 2017 Aug 7;7(1):7429
pubmed: 28785024