Chronically shortened rod outer segments accompany photoreceptor cell death in Choroideremia.
Adaptor Proteins, Signal Transducing
/ deficiency
Animals
Apoptosis
Choroideremia
/ metabolism
Disease Models, Animal
Female
Mice
Mice, Knockout
Microscopy, Electron, Transmission
Mitochondria
/ metabolism
Photoreceptor Cells, Vertebrate
/ metabolism
Rhodopsin
/ metabolism
Rod Cell Outer Segment
/ metabolism
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2020
2020
Historique:
received:
04
08
2020
accepted:
29
10
2020
entrez:
17
11
2020
pubmed:
18
11
2020
medline:
1
1
2021
Statut:
epublish
Résumé
X-linked choroideremia (CHM) is a disease characterized by gradual retinal degeneration caused by loss of the Rab Escort Protein, REP1. Despite partial compensation by REP2 the disease is characterized by prenylation defects in multiple members of the Rab protein family that are master regulators of membrane traffic. Remarkably, the eye is the only organ affected in CHM patients, possibly because of the huge membrane traffic burden of the post mitotic photoreceptors, which synthesise outer segments, and the adjacent retinal pigment epithelium that degrades the spent portions each day. In this study, we aimed to identify defects in membrane traffic that might lead to photoreceptor cell death in CHM. In a heterozygous null female mouse model of CHM (Chmnull/WT), degeneration of the photoreceptor layer was clearly evident from increased numbers of TUNEL positive cells compared to age matched controls, small numbers of cells exhibiting signs of mitochondrial stress and greatly increased microglial infiltration. However, most rod photoreceptors exhibited remarkably normal morphology with well-formed outer segments and no discernible accumulation of transport vesicles in the inner segment. The major evidence of membrane trafficking defects was a shortening of rod outer segments that was evident at 2 months of age but remained constant over the period during which the cells die. A decrease in rhodopsin density found in the outer segment may underlie the outer segment shortening but does not lead to rhodopsin accumulation in the inner segment. Our data argue against defects in rhodopsin transport or outer segment renewal as triggers of cell death in CHM.
Identifiants
pubmed: 33201897
doi: 10.1371/journal.pone.0242284
pii: PONE-D-20-24261
pmc: PMC7671558
doi:
Substances chimiques
Adaptor Proteins, Signal Transducing
0
Chm protein, mouse
0
Rhodopsin
9009-81-8
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0242284Subventions
Organisme : Wellcome Trust
ID : 093445
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 212216
Pays : United Kingdom
Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Ophthalmology. 2013 Jan;120(1):e5-12
pubmed: 22986110
Ophthalmology. 2001 Apr;108(4):711-20
pubmed: 11297488
Mol Biol Cell. 2010 Dec;21(23):4076-88
pubmed: 20926680
PLoS One. 2013 Dec 16;8(12):e81758
pubmed: 24358126
EMBO Mol Med. 2015 Jul 02;7(9):1179-97
pubmed: 26139610
Nat Chem. 2019 Jun;11(6):552-561
pubmed: 30936521
Mol Biol Cell. 2004 May;15(5):2264-75
pubmed: 14978221
Nat Genet. 1997 Feb;15(2):216-9
pubmed: 9020854
Invest Ophthalmol Vis Sci. 2004 Mar;45(3):971-6
pubmed: 14985319
Invest Ophthalmol Vis Sci. 1976 Sep;15(9):700-25
pubmed: 986765
Science. 1993 Jan 15;259(5093):377-81
pubmed: 8380507
Prog Retin Eye Res. 2014 Jan;38:1-19
pubmed: 24135424
Prog Mol Biol Transl Sci. 2015;132:39-71
pubmed: 26055054
Vis Neurosci. 2007 Mar-Apr;24(2):151-5
pubmed: 17640405
Invest Ophthalmol Vis Sci. 2006 Sep;47(9):4113-20
pubmed: 16936131
Ophthalmology. 2013 Jan;120(1):100-5
pubmed: 22986109
PLoS One. 2016 Aug 16;11(8):e0161236
pubmed: 27529348
J Comp Neurol. 1980 Apr 1;190(3):501-8
pubmed: 6771304
Proc Natl Acad Sci U S A. 2015 Dec 1;112(48):14870-5
pubmed: 26578801
Mol Neurobiol. 2015 Aug;52(1):679-95
pubmed: 25270370
PLoS One. 2012;7(11):e49889
pubmed: 23185477
J Biol Chem. 1994 Jan 21;269(3):2111-7
pubmed: 8294464
Ophthalmology. 2020 Oct;127(10):1384-1394
pubmed: 32423767
Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):14176-81
pubmed: 8943080
Mol Biol Cell. 2004 Jan;15(1):332-44
pubmed: 14617806
J Biol Chem. 2011 Mar 25;286(12):10551-67
pubmed: 21224384
Invest Ophthalmol Vis Sci. 1996 Jan;37(1):196-203
pubmed: 8550323
Exp Eye Res. 2003 Apr;76(4):463-71
pubmed: 12634111
Proc Natl Acad Sci U S A. 2015 Dec 29;112(52):15922-7
pubmed: 26668363
J Clin Invest. 2006 Feb;116(2):386-94
pubmed: 16410831
PLoS One. 2009 Dec 22;4(12):e8402
pubmed: 20027300
Lancet. 2006 Nov 18;368(9549):1795-809
pubmed: 17113430
Ophthalmic Genet. 1996 Jun;17(2):43-6
pubmed: 8832719
Ophthalmology. 2017 Mar;124(3):359-373
pubmed: 27986385
Nat Rev Mol Cell Biol. 2009 Aug;10(8):513-25
pubmed: 19603039
Surv Ophthalmol. 2009 May-Jun;54(3):401-7
pubmed: 19422966
J Biol Chem. 1995 Oct 13;270(41):24420-7
pubmed: 7592656
Mol Biol Cell. 2007 Oct;18(10):3914-27
pubmed: 17671165
J Cell Biol. 1969 Aug;42(2):392-403
pubmed: 5792328
J Cell Biol. 2015 Nov 9;211(3):495-502
pubmed: 26527746
Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):736-41
pubmed: 9892703
Invest Ophthalmol Vis Sci. 2010 Oct;51(10):4913-20
pubmed: 20445111
PLoS One. 2013;8(2):e57769
pubmed: 23460904
Eye (Lond). 1995;9 ( Pt 6):763-71
pubmed: 8849547