Predictive Modeling for Perinatal Mortality in Resource-Limited Settings.
Adult
Birth Weight
Cohort Studies
Congo
/ epidemiology
Female
Guatemala
/ epidemiology
Health Resources
/ trends
Humans
India
/ epidemiology
Infant
Infant Mortality
Infant, Newborn
Kenya
/ epidemiology
Male
Pakistan
/ epidemiology
Perinatal Death
/ etiology
Perinatal Mortality
/ trends
Predictive Value of Tests
Pregnancy
Prospective Studies
Risk Factors
Stillbirth
/ epidemiology
Zambia
/ epidemiology
Journal
JAMA network open
ISSN: 2574-3805
Titre abrégé: JAMA Netw Open
Pays: United States
ID NLM: 101729235
Informations de publication
Date de publication:
02 11 2020
02 11 2020
Historique:
entrez:
18
11
2020
pubmed:
19
11
2020
medline:
20
1
2021
Statut:
epublish
Résumé
The overwhelming majority of fetal and neonatal deaths occur in low- and middle-income countries. Fetal and neonatal risk assessment tools may be useful to predict the risk of death. To develop risk prediction models for intrapartum stillbirth and neonatal death. This cohort study used data from the Eunice Kennedy Shriver National Institute of Child Health and Human Development Global Network for Women's and Children's Health Research population-based vital registry, including clinical sites in South Asia (India and Pakistan), Africa (Democratic Republic of Congo, Zambia, and Kenya), and Latin America (Guatemala). A total of 502 648 pregnancies were prospectively enrolled in the registry. Risk factors were added sequentially into the data set in 4 scenarios: (1) prenatal, (2) predelivery, (3) delivery and day 1, and (4) postdelivery through day 2. Data sets were randomly divided into 10 groups of 3 analysis data sets including training (60%), test (20%), and validation (20%). Conventional and advanced machine learning modeling techniques were applied to assess predictive abilities using area under the curve (AUC) for intrapartum stillbirth and neonatal mortality. All prenatal and predelivery models had predictive accuracy for both intrapartum stillbirth and neonatal mortality with AUC values 0.71 or less. Five of 6 models for neonatal mortality based on delivery/day 1 and postdelivery/day 2 had increased predictive accuracy with AUC values greater than 0.80. Birth weight was the most important predictor for neonatal death in both postdelivery scenarios with independent predictive ability with AUC values of 0.78 and 0.76, respectively. The addition of 4 other top predictors increased AUC to 0.83 and 0.87 for the postdelivery scenarios, respectively. Models based on prenatal or predelivery data had predictive accuracy for intrapartum stillbirths and neonatal mortality of AUC values 0.71 or less. Models that incorporated delivery data had good predictive accuracy for risk of neonatal mortality. Birth weight was the most important predictor for neonatal mortality.
Identifiants
pubmed: 33206194
pii: 2773076
doi: 10.1001/jamanetworkopen.2020.26750
pmc: PMC7675108
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2026750Subventions
Organisme : NICHD NIH HHS
ID : UG1 HD076461
Pays : United States
Organisme : NICHD NIH HHS
ID : UG1 HD078439
Pays : United States
Organisme : NICHD NIH HHS
ID : UG1 HD076465
Pays : United States
Organisme : NICHD NIH HHS
ID : U01 HD040477
Pays : United States
Organisme : NICHD NIH HHS
ID : U10 HD078439
Pays : United States
Organisme : NICHD NIH HHS
ID : U10 HD076457
Pays : United States
Organisme : NICHD NIH HHS
ID : U10 HD076474
Pays : United States
Organisme : NICHD NIH HHS
ID : U01 HD040636
Pays : United States
Organisme : NICHD NIH HHS
ID : U10 HD076465
Pays : United States
Organisme : NICHD NIH HHS
ID : U10 HD078438
Pays : United States
Organisme : NICHD NIH HHS
ID : UG1 HD078438
Pays : United States
Organisme : NICHD NIH HHS
ID : UG1 HD076457
Pays : United States
Organisme : NICHD NIH HHS
ID : UG1 HD076474
Pays : United States
Organisme : NICHD NIH HHS
ID : U10 HD076461
Pays : United States
Organisme : NICHD NIH HHS
ID : U10 HD078437
Pays : United States
Références
JAMA. 2018 Apr 3;319(13):1317-1318
pubmed: 29532063
BMC Public Health. 2013;13 Suppl 3:S2
pubmed: 24564800
Jt Comm J Qual Improv. 1999 Sep;25(9):462-9
pubmed: 10481815
Acta Obstet Gynecol Scand. 2011 Dec;90(12):1379-85
pubmed: 21916854
BJOG. 2018 Nov;125(12):1591-1599
pubmed: 29782696
Int J Gynaecol Obstet. 2009 Oct;107 Suppl 1:S47-62, S63-4
pubmed: 19815203
Int J Epidemiol. 2019 Feb 1;48(1):186-198
pubmed: 30325465
JAMA. 2018 Jul 3;320(1):27-28
pubmed: 29813156
Int J Epidemiol. 2017 Oct 1;46(5):1668-1677
pubmed: 29040531
Circulation. 2015 Jan 13;131(2):211-9
pubmed: 25561516
Int J Gynaecol Obstet. 2012 Sep;118(3):190-3
pubmed: 22738806
N Engl J Med. 2013 Dec 5;369(23):2226-35
pubmed: 24304052
Am J Perinatol. 2018 Jul;35(8):707-715
pubmed: 29241280
Reprod Health. 2015;12 Suppl 2:S1
pubmed: 26063166
Reprod Health. 2018 Jun 22;15(Suppl 1):100
pubmed: 29945647
Lancet Child Adolesc Health. 2020 Apr;4(4):299-311
pubmed: 32119841
JAMA. 2018 Sep 18;320(11):1101-1102
pubmed: 30178065
Lancet. 2010 Jun 5;375(9730):1969-87
pubmed: 20466419
Arch Dis Child Fetal Neonatal Ed. 2016 Nov;101(6):F494-F501
pubmed: 26895876
Lancet. 2005 Mar 5-11;365(9462):891-900
pubmed: 15752534
Cochrane Database Syst Rev. 2017 Mar 21;3:CD004454
pubmed: 28321847
Lancet. 2011 Apr 23;377(9775):1448-63
pubmed: 21496911
Lancet. 2013 Aug 3;382(9890):417-425
pubmed: 23746775
Lancet. 2015 Jan 31;385(9966):430-40
pubmed: 25280870
JAMA. 2016 Feb 9;315(6):551-2
pubmed: 26864406
JAMA. 2019 Jan 1;321(1):31-32
pubmed: 30535130
J Pediatr. 2018 Apr;195:33-38.e2
pubmed: 29306493
JAMA. 2019 Nov 22;:
pubmed: 31755902
Neonatology. 2017;111(1):61-67
pubmed: 27544512
J Glob Health. 2018 Jun;8(1):010404
pubmed: 29423189
Pediatrics. 2005 Dec;116(6):1367-73
pubmed: 16322160
Am J Obstet Gynecol. 2016 Nov;215(5):628.e1-628.e7
pubmed: 27372269
N Engl J Med. 2008 Apr 17;358(16):1672-81
pubmed: 18420500