Engineered Microbes for Producing Anticholinergics.
anticholinergics
bioproduction
hyoscyamine dehydrogenase
tropane alkaloids
yeast
Journal
Chembiochem : a European journal of chemical biology
ISSN: 1439-7633
Titre abrégé: Chembiochem
Pays: Germany
ID NLM: 100937360
Informations de publication
Date de publication:
16 04 2021
16 04 2021
Historique:
revised:
18
11
2020
received:
18
12
2020
pubmed:
21
11
2020
medline:
15
12
2021
entrez:
20
11
2020
Statut:
ppublish
Résumé
The tropane alkaloids (TAs) hyoscyamine and scopolamine function as acetylcholine receptor antagonists and are used clinically as parasympatholytics to treat neuromuscular disorders in humans. While TAs are synthesized in a small subset of plant families, these specialized metabolites are only accumulated in limited quantities in plant organs. The complex chemical structures of these compounds make their industrial production by chemical synthesis very challenging, Therefore, the supply of these TAs still relies on intensive farming of Duboisia shrubs in tropical countries. Many adverse factors such as climate fluctuations and pandemics can thus influence annual world production. Based on the landmark microbial production of the antimalarial semi-synthetic artemisinin, the Smolke group recently developed a yeast cell factory capable of de novo synthesizing hyoscyamine and scopolamine, thus paving the way for an alternative production of these compounds.
Identifiants
pubmed: 33215811
doi: 10.1002/cbic.202000757
doi:
Substances chimiques
Cholinergic Antagonists
0
Scopolamine
DL48G20X8X
Hyoscyamine
PX44XO846X
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1368-1370Subventions
Organisme : ARD2020 and ARD CVL Biopharmaceutical program
ID : 23089
Informations de copyright
© 2020 Wiley-VCH GmbH.
Références
G. Grynkiewicz, M. Gadzikowska, Pharmacol. Rep. 2008, 60, 439-463.
A. Cravens, J. Payne, C. D. Smolke, Nat. Commun. 2019, 10, 2142.
F. M. Szczebara, C. Chandelier, C. Villeret, A. Masurel, S. Bourot, C. Duport, S. Blanchard, A. Groisillier, E. Testet, P. Costaglioli, G. Cauet, E. Degryse, D. Balbuena, J. Winter, T. Achstetter, R. Spagnoli, D. Pompon, B. Dumas, Nat. Biotechnol. 2003, 21, 143-149.
E. Pyne, L. Narcross, V. J. J. Martin, Plant Physiol. 2019, 179, 844-861.
V. Courdavault, S. E. O′Connor, A. Oudin, S. Besseau, N. Papon, Trends Cancer. 2020, 6, 444-448.
P. Srinivasan, C. D. Smolke, Nature 2020, 585, 614-619.
P. Srinivasan, C. D. Smolke, Nat. Commun. 2019, 10, 3634.
F. Qiu, J. Zeng, J. Wang, J. P. Huang, W. Zhou, C. Yang, X. Lan, M. Chen, S. X. Huang, G. Kai, Z. Liao, New Phytol. 2020, 225, 1906-1914.
T. Bontpart, V. Cheynier, A. Ageorges, N. Terrier, New Phytol. 2015, 208, 695-707.
P. S. Grewal, J. A. Samson, J. J. Baker, B. Choi, J. E. Dueber, Nat. Chem. Biol. 2020, DOI: 10.1038/s41589-020-00668-4.
T. Dugé de Bernonville, N. Papon, M. Clastre, S. E. O'Connor, V. Courdavault, Trends Pharmacol. Sci. 2020, 41, 142-146.
R. S. Nett, W. Lau, E. S. Sattely, Nature 2020, 584, 148-153.
E. A. Stander, N. Papon, V. Courdavault, ChemMedChem 2020, DOI: 10.1002/cmdc.202000633.
M. E. Pyne, K. Kevvai, P. S. Grewal, L. Narcross, B. Choi, L. Bourgeois, J. E. Dueber, V. J. J. Martin, Nat. Commun. 2020, 11, 1-10.
N. Kulagina, N. Papon, V. Courdavault, ChemBioChem 2020, DOI: 10.1002/cbic.202000579.