Oscillatory correlates of auditory working memory examined with human electrocorticography.
Auditory working memory
Electrocorticography
Hippocampus
Neurophysiology
Oscillatory activity
Journal
Neuropsychologia
ISSN: 1873-3514
Titre abrégé: Neuropsychologia
Pays: England
ID NLM: 0020713
Informations de publication
Date de publication:
08 01 2021
08 01 2021
Historique:
received:
19
06
2020
revised:
23
10
2020
accepted:
16
11
2020
pubmed:
24
11
2020
medline:
25
6
2021
entrez:
23
11
2020
Statut:
ppublish
Résumé
This work examines how sounds are held in auditory working memory (AWM) in humans by examining oscillatory local field potentials (LFPs) in candidate brain regions. Previous fMRI studies by our group demonstrated blood oxygenation level-dependent (BOLD) response increases during maintenance in auditory cortex, inferior frontal cortex and the hippocampus using a paradigm with a delay period greater than 10s. The relationship between such BOLD changes and ensemble activity in different frequency bands is complex, and the long delay period raised the possibility that long-term memory mechanisms were engaged. Here we assessed LFPs in different frequency bands in six subjects with recordings from all candidate brain regions using a paradigm with a short delay period of 3 s. Sustained delay activity was demonstrated in all areas, with different patterns in the different areas. Enhancement in low frequency (delta) power and suppression across higher frequencies (beta/gamma) were demonstrated in primary auditory cortex in medial Heschl's gyrus (HG) whilst non-primary cortex showed patterns of enhancement and suppression that altered at different levels of the auditory hierarchy from lateral HG to superior- and middle-temporal gyrus. Inferior frontal cortex showed increasing suppression with increasing frequency. The hippocampus and parahippocampal gyrus showed low frequency increases and high frequency decreases in oscillatory activity. This work demonstrates sustained activity patterns during AWM maintenance, with prominent low-frequency increases in medial temporal lobe regions.
Identifiants
pubmed: 33227284
pii: S0028-3932(20)30363-8
doi: 10.1016/j.neuropsychologia.2020.107691
pmc: PMC7884909
pii:
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
107691Subventions
Organisme : NIH HHS
ID : S10 OD025025
Pays : United States
Organisme : Wellcome Trust
ID : WT106964MA
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/T032553/1
Pays : United Kingdom
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : NIDCD NIH HHS
ID : R01 DC004290
Pays : United States
Commentaires et corrections
Type : ErratumIn
Informations de copyright
Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.
Références
Science. 2008 Sep 5;321(5894):1322-7
pubmed: 18772431
J Neurosci. 2016 Apr 20;36(16):4492-505
pubmed: 27098693
Neuroimage. 2010 Jan 15;49(2):1479-89
pubmed: 19778617
J Neurosurg. 1996 Jan;84(1):129-32
pubmed: 8613821
Neuroimage. 2003 Aug;19(4):1417-26
pubmed: 12948699
Neuron. 2018 Oct 24;100(2):463-475
pubmed: 30359609
Nat Rev Neurosci. 2019 Aug;20(8):466-481
pubmed: 31086326
J Neurosci Methods. 2007 Aug 15;164(1):177-90
pubmed: 17517438
Neuropsychologia. 2018 Jul 1;115:25-41
pubmed: 29526647
J Neurosci. 1994 Apr;14(4):1908-19
pubmed: 8158246
Science. 2006 Sep 15;313(5793):1626-8
pubmed: 16973878
Neuroimage. 2011 Jan 1;54(1):313-27
pubmed: 20656036
Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):12961-6
pubmed: 21768383
Science. 2005 Aug 5;309(5736):951-4
pubmed: 16081741
Neuron. 2017 May 3;94(3):677-688.e6
pubmed: 28434800
Nat Rev Neurosci. 2005 Feb;6(2):97-107
pubmed: 15654324
Science. 2011 Dec 9;334(6061):1415-20
pubmed: 22052975
Cereb Cortex. 2009 May;19(5):1208-21
pubmed: 18854581
Hippocampus. 2012 Apr;22(4):748-61
pubmed: 21538660
Neuroimage. 2016 Aug 15;137:165-177
pubmed: 27236083
Nature. 2017 Mar 29;543(7647):719-722
pubmed: 28358077
J Neurosci. 2011 Nov 2;31(44):15674-80
pubmed: 22049410
Neuroimage. 2012 Aug 15;62(2):782-90
pubmed: 21979382
Psychol Rev. 1992 Apr;99(2):195-231
pubmed: 1594723
Neuroscience. 2006 Apr 28;139(1):23-38
pubmed: 16324795
Proc Natl Acad Sci U S A. 2020 Nov 10;117(45):28463-28474
pubmed: 33109718
Cognition. 2004 May-Jun;92(1-2):67-99
pubmed: 15037127
Neuron. 2006 Jul 20;51(2):251-61
pubmed: 16846859
Neuroimage. 2018 Apr 1;169:286-301
pubmed: 29274745
J Neurol Neurosurg Psychiatry. 1957 Feb;20(1):11-21
pubmed: 13406589
J Cogn Neurosci. 2015 Jul;27(7):1322-33
pubmed: 25603030
Neuroimage. 2007 Feb 15;34(4):1443-9
pubmed: 17188898
Hum Brain Mapp. 2016 Dec;37(12):4248-4261
pubmed: 27400999
J Neurosci Methods. 2016 Mar 1;261:135-54
pubmed: 26711370
Neuroimage. 2018 Dec;183:254-262
pubmed: 30107259
Ann N Y Acad Sci. 2009 Jul;1169:273-7
pubmed: 19673792
J Neurosci. 2008 Jun 4;28(23):5983-90
pubmed: 18524903
Brain Res Rev. 2010 Mar;62(2):233-44
pubmed: 20026191
J Neurosci. 2001 May 1;21(9):3175-83
pubmed: 11312302
Nat Neurosci. 2017 Jun;20(6):864-871
pubmed: 28414333
J Neurosurg. 2018 Jul;129(1):157-164
pubmed: 28946181
Neuroimage. 2019 Dec;203:116198
pubmed: 31539590
Nat Neurosci. 2019 Jul;22(7):1159-1167
pubmed: 31182866
J Neurosci. 2020 Jan 15;40(3):671-681
pubmed: 31754009
J Neurosci Methods. 2004 Mar 15;134(1):9-21
pubmed: 15102499
J Neurosurg. 2010 Jun;112(6):1301-7
pubmed: 19663547
J Neurosci. 2019 Oct 30;39(44):8679-8689
pubmed: 31533976
J Neurosci. 2013 Sep 4;33(36):14607-16
pubmed: 24005311