Objective and subjective responses to motion sickness: the group and the individual.
Internal/external vision
Modeling
Motion sickness
Physiological measures
Repeatability
Journal
Experimental brain research
ISSN: 1432-1106
Titre abrégé: Exp Brain Res
Pays: Germany
ID NLM: 0043312
Informations de publication
Date de publication:
Feb 2021
Feb 2021
Historique:
received:
27
05
2020
accepted:
11
11
2020
pubmed:
30
11
2020
medline:
29
7
2021
entrez:
29
11
2020
Statut:
ppublish
Résumé
We investigated and modeled the temporal evolution of motion sickness in a highly dynamic sickening drive. Slalom maneuvers were performed in a passenger vehicle, resulting in lateral accelerations of 0.4 g at 0.2 Hz, to which participants were subjected as passengers for up to 30 min. Subjective motion sickness was recorded throughout the sickening drive using the MISC scale. In addition, physiological and postural responses were evaluated by recording head roll, galvanic skin response (GSR) and electrocardiography (ECG). Experiment 1 compared external vision (normal view through front and side car windows) to internal vision (obscured view through front and side windows). Experiment 2 tested hypersensitivity with a second exposure a few minutes after the first drive and tested repeatability of individuals' sickness responses by measuring these two exposures three times in three successive sessions. An adapted form of Oman's model of nausea was used to quantify sickness development, repeatability, and motion sickness hypersensitivity at an individual level. Internal vision was more sickening compared to external vision with a higher mean MISC (4.2 vs. 2.3), a higher MISC rate (0.59 vs. 0.10 min
Identifiants
pubmed: 33249541
doi: 10.1007/s00221-020-05986-6
pii: 10.1007/s00221-020-05986-6
pmc: PMC7936971
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
515-531Références
Barendswaard S, Pool DM, Abbink DA (2017) A method to assess individualized driver models: descriptiveness, identifiability and realism driver model used for assessment. In: Driving simulation conference. https://doi.org/10.1016/j.trf.2018.02.014
Benedek M, Kaernbach C (2010a) A continuous measure of phasic electrodermal activity. J Neurosci Methods 190(1):80–91
doi: 10.1016/j.jneumeth.2010.04.028
Benedek M, Kaernbach C (2010) Decomposition of skin conductance data by means of nonnegative deconvolution. Psychophysiology 47:647–658. https://doi.org/10.1111/j.1469-8986.2009.00972.x
doi: 10.1111/j.1469-8986.2009.00972.x
pubmed: 20230512
pmcid: 2904901
Bertolini G, Straumann D (2016) Moving in a moving world: a review on vestibular motion sickness. Front Neurol 7(14):1–11. https://doi.org/10.3389/fneur.2016.00014
doi: 10.3389/fneur.2016.00014
Bijveld MM, Bronstein AM, Golding JF, Gresty MA (2008) Nauseogenicity of off-vertical axis rotation vs. equivalent visual motion. Aviat Space Environ Med 79(7):661–665. https://doi.org/10.3357/ASEM.2241.2008
doi: 10.3357/ASEM.2241.2008
pubmed: 18619124
Billman GE (2013) The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front Physiol 4(February):1–5. https://doi.org/10.1016/j.displa.2010.09.005
doi: 10.3389/fphys.2013.00026
Bock OL, Oman CM (1982) Dynamics of subjective discomfort in motion sickness as measured with a magnitude estimation method. Aviat Space Environ Med 53(8):773–777
pubmed: 7181808
Bos JE (2011) Nuancing the relationship between motion sickness and postural stability. Displays 32(4):189–193. https://doi.org/10.1016/j.displa.2010.09.005
doi: 10.1016/j.displa.2010.09.005
Bos JE, Bles W (1998) Modelling motion sickness and subjective vertical mismatch detailed for vertical motions. Brain Res Bull 47(5):537–542. https://doi.org/10.1016/S0361-9230(98)00088-4
doi: 10.1016/S0361-9230(98)00088-4
pubmed: 10052585
Bos JE, Mackinnon SN, Patterson A (2005) Motion sickness symptoms in a ship motion simulator: effects of inside, outside, and no view. Aviat Space Environ Med 76(12):1111–1118
pubmed: 16370260
Bos JE, Bles W, Groen EL (2008) A theory on visually induced motion sickness. Displays 29:47–57. https://doi.org/10.1016/j.displa.2007.09.002
doi: 10.1016/j.displa.2007.09.002
Butler CA, Griffin MJ (2006) Motion sickness during fore-and-aft oscillation: effect of the visual scene. Aviat Space Environ Med 77(12):1236–43
pubmed: 17183919
Butler C, Griffin MJ (2009) Motion sickness with combined fore-aft and pitch oscillation: effect of phase and the visual scene. Aviat Space Environ Med 80(11):946–954. https://doi.org/10.3357/ASEM.2490.2009
doi: 10.3357/ASEM.2490.2009
pubmed: 19911518
Cian C, Ohlmann T, Ceyte H, Gresty MA, Golding JF (2011) Off vertical axis rotation motion sickness and field dependence. Aviat Space Environ Med 82(10):959–963. https://doi.org/10.1016/j.trf.2018.02.014 0
doi: 10.3357/ASEM.3049.2011
pubmed: 21961400
Cleij D, Venrooij J, Pretto P, Katliar M, Bülthoff HH, Steffen D, Hoffmeyer FW, Schöner H (2019) Comparison between filter- and optimization-based motion cueing algorithms for driving simulation. Transp Res Part F Psychol Behav 61:53–68. https://doi.org/10.1016/j.trf.2018.02.014 1
doi: 10.1016/j.trf.2017.04.005
Cowings PS, Toscano WB (1993) Autogenic-feedback training (AFT) as a preventive method for space motion sickness : background and experimental design. Technical report, NASA. https://doi.org/10.1016/j.trf.2018.02.014 2
Dahlman J, Sjörs A, Lindström J, Ledin T (2009) Performance and autonomic responses during motion sickness. Hum Fact 51(1):56–66. https://doi.org/10.1016/j.trf.2018.02.014 3
doi: 10.1177/0018720809332848
Dai M, Sofroniou S, Kunin M, Raphan T, Cohen B (2010) Motion sickness induced by off-vertical axis rotation (OVAR). Exp Brain Res 5:207–222. https://doi.org/10.1016/j.trf.2018.02.014 4
doi: 10.1007/s00221-010-2305-4
Donohew BE, Griffin MJ (2004) Motion sickness: effect of the frequency of lateral oscillation. Aviat Space Environ Med 75(8):649–56
pubmed: 15328780
Feenstra PJ, Bos JE, Gent RNHWV (2011) A visual display enhancing comfort by counteracting airsickness. Displays 32(4):194–200. https://doi.org/10.1016/j.trf.2018.02.014 5
doi: 10.1016/j.displa.2010.11.002
Fox J (2002) Bootstrapping regression models. https://doi.org/10.1016/j.trf.2018.02.014 6
Golding F, Stottt JRR (1997) Objective and subjective time courses of recovery from motion sickness assessed by repeated motion challenges j. J Vestib Res Equilib Orientat 7(6):421–428
doi: 10.1016/S0957-4271(96)00175-9
Golding JF, Phil D, Markey HM, Stott JRR (1995) The effects of motion direction, body axis, and posture on motion sickness induced by low frequency linear oscillation. Aviat Space Environ Med 66(11):1046–1051
pubmed: 8588793
Golding JF, Bles W, Bos JE, Haynes T, Gresty MA (2003) Motion sickness and tilts of the inertial force environment: active suspension systems vs active passengers. Aviat Space Environ Med 74(3):220–227
pubmed: 12650268
Graybiel A (1969) Structural elements in the concept of motion sickness. Aerosp Med 40(4):351–367
pubmed: 5305044
Griffin MJ, Howarth HVC (2000) Motion Sickness History Questionnaire M.J. Griffin and H.V.C. Howarth ISVR Technical Report No. 283 May 2000. Technical Report. In: 283, ISVR University of Southampton. https://doi.org/10.1016/j.trf.2018.02.014 7
Griffin MJ, Newman MM (2004) Visual field effects on motion sickness in cars. Aviat Space Environ Med 75(9):739–748
pubmed: 15460624
Himi N, Koga T, Nakamura E, Kobashi M (2004) Differences in autonomic responses between subjects with and without nausea while watching an irregularly oscillating video. Auton Neurosci 116:46–53. https://doi.org/10.1016/j.trf.2018.02.014 8
doi: 10.1016/j.autneu.2004.08.008
pubmed: 15556837
Holmes SR, Griffin MJ (2001) Correlation between heart rate and the severity of motion sickness caused by optokinetic stimulation. J Psychophysiol 15:35–42. https://doi.org/10.1016/j.trf.2018.02.014 9
doi: 10.1027//0269-8803.15.1.35
Karjanto J, Yusof N, Wang C, Terken J, Delbressine F, Rauterberg M (2018) The effect of peripheral visual feedforward system in enhancing situation awareness and mitigating motion sickness in fully automated driving. Transp Res Part F Psychol Behav 58:678–692. https://doi.org/10.1111/j.1469-8986.2009.00972.x 0
doi: 10.1016/j.trf.2018.06.046
Keshavarz B, Hecht H (2011) Validating an efficient method to quantify motion sickness. Hum Fact 53(4):415–426. https://doi.org/10.1111/j.1469-8986.2009.00972.x 1
doi: 10.1177/0018720811403736
Kuiper OX, Bos JE (2019) knowing what’s coming : unpredictable motion causes more motion sickness. Hum Fact Ergon Soc. https://doi.org/10.1111/j.1469-8986.2009.00972.x 2
doi: 10.1177/0018720819876139
Kuiper OX, Bos JE, Diels C (2018) Looking forward: in-vehicle auxiliary display positioning affects carsickness. Appl Ergon 68:169–175. https://doi.org/10.1111/j.1469-8986.2009.00972.x 3
doi: 10.1016/j.apergo.2017.11.002
pubmed: 29409631
Lackner JR (2014) Motion sickness: more than nausea and vomiting. Exp Brain Res 232:2493–2510. https://doi.org/10.1111/j.1469-8986.2009.00972.x 4
doi: 10.1007/s00221-014-4008-8
pubmed: 24961738
pmcid: 4112051
Lin Ct, Lin Cl, Chiu Tw, Member S, Duann Jr (2011) Effect of respiratory modulation on relationship between heart rate variability and motion sickness. In: 2011 Annual International Conference of the IEEE engineering in medicine and biology society, pp 1921–1924. https://doi.org/10.1109/IEMBS.2011.6090543
Mackersie LC, Calderon-moultrie N (2016) Autonomic nervous system reactivity during speech repetition tasks : heart rate variability and skin conductance. Ear Hear 37:118–125. https://doi.org/10.1097/AUD.0000000000000305 5
doi: 10.1097/AUD.0000000000000305
Mars F, Saleh L, Chevrel P, Claveau F, Lafay Jf (2011) Modeling the visual and motor control of steering with an eye to shared- control automation. In: Proceedings of the human factors and ergonomics society annual meeting, vol 55. https://doi.org/10.1177/1071181311551296
Mullen TJ, Berger RD, Oman CM, Cohen RJ (1998) Human heart rate variability releation is unchanged during motion sickness. J Vestib Res 8(I):95–105
pubmed: 9416595
O’Hanlon JF, McCauley ME (1974) Motion sickness incidence as a function of the frequency and acceleration of vertical sinusoidal motion. Aerosp Med 45(4):366–9
pubmed: 4821729
Ohyama S, Nishiike S, Watanabe H, Matsuoka K (2007) Autonomic responses during motion sickness induced by virtual reality. Auris Nasus Larynx 34(3):303–306. https://doi.org/10.1016/j.anl.2007.01.002 6
doi: 10.1016/j.anl.2007.01.002
pubmed: 17336009
Oman CM (1990) Motion sickness: a synthesis and evaluation of the sensory conHict theory. Can J Physiol Pharmacol 68(2):294–303. https://doi.org/10.1111/j.1469-8986.2009.00972.x 7
doi: 10.1139/y90-044
pubmed: 2178753
Oman CM, Lichtenberg BK, Money KE, Mccoy RK (1986) M.I.T./Canadian vestibular experiments on the Spacelab-1 mission 4. Space motion sickness: symptoms, stimuli and predictability. Exp Brain Res 65:316–334. https://doi.org/10.1111/j.1469-8986.2009.00972.x 9
doi: 10.1016/0022-460X(90)90652-G
Oman CM, Cullen KE (2014) Brainstem processing of vestibular sensory exafference: implications for motion sickness etiology. Exp Brain Res 5:2483–2492. https://doi.org/10.1111/j.1469-8986.2009.00972.x 8
doi: 10.1007/s00221-014-3973-2
Riccio GE, Stoffregen TA (1991) An ecological theory of motion sickness and postural instability. Ecol Psychol 3(3):195–240. https://doi.org/10.1207/s15326969eco0303_2 0
doi: 10.1207/s15326969eco0303_2
Rosen AV, Koppikar S, Shaw C, Baranchuk A (2014) Common ECG lead placement errors. Part II : precordial misplacements. Int J Med Stud 2(3):99–103
doi: 10.5195/ijms.2014.96
Salter S, Diels C, Herriotts P, Kanarachos S, Thake D (2018) Motion sickness in automated vehicles with forward and rearward facing seating orientations. Appl Ergon 78:54–61. https://doi.org/10.1111/j.1469-8986.2009.00972.x 3
doi: 10.1016/j.apergo.2017.11.002
Smart LJ, Stoffregen TA, Benoît GB (2002) Visually induced motion sickness predicted by postural instability. Hum Fact 44(3):451–465. https://doi.org/10.3389/fneur.2016.00014 2
doi: 10.1518/0018720024497745
Stoffregen TA, Smart LJ (1998) Postural instability precedes motion sickness. Brain Res Bull. https://doi.org/10.3389/fneur.2016.00014 3
doi: 10.1016/S0361-9230(98)00102-6
pubmed: 10052573
Stoffregen TA, Fc Chen, Varlet M, Alcantara C (2013) Getting your sea legs. PLOS One 8:6. https://doi.org/10.3389/fneur.2016.00014 4
doi: 10.1371/journal.pone.0066949
Stoffregen TA, Chou Y, Koslucher FC (2014) Motion control, motion sickness, and the postural dynamics of mobile devices. Exp Brain Res 232:1389–1397. https://doi.org/10.3389/fneur.2016.00014 5
doi: 10.1007/s00221-014-3859-3
pubmed: 24504199
Tal D, Bar R, Nachum Z, Gil A, Shupak A (2010) Postural dynamics and habituation to seasickness. Neurosci Lett 479(2):134–137. https://doi.org/10.3389/fneur.2016.00014 6
doi: 10.1016/j.neulet.2010.05.044
pubmed: 20493235
Turner M, Griffin MJ (1999) Motion sickness in public road transport: passenger behaviour and susceptibility. Ergonomics 42(2014):444–461. https://doi.org/10.3389/fneur.2016.00014 7
doi: 10.1080/001401399185586
pubmed: 10048305
Van Der El K, Pool DM, Mulder M (2017) Measuring and modeling driver steering behavior: from compensatory tracking to curve driving. Transp Res Part F Psychol Behav 5:45. https://doi.org/10.3389/fneur.2016.00014 8
doi: 10.1016/j.trf.2017.09.011
Varlet M, Bardy BG, Chen F, Alcantara C, Stoffregen TA (2015) Coupling of postural activity with motion of a ship at sea. Exp Brain Res 233:1607–1616. https://doi.org/10.3389/fneur.2016.00014 9
doi: 10.1007/s00221-015-4235-7
pubmed: 25716613
Villard SJ, Flanagan MB, Albanese GM, Stoffregen TA (2008) Postural instability and motion sickness in a virtual moving room. Hum Fact 50(2):332–345. https://doi.org/10.3357/ASEM.2241.2008 0
doi: 10.1518/001872008X250728.Copyright
Wada T, Fujisawa S, Doi S (2018) Analysis of driver’s head tilt using a mathematical model of motion sickness. Int J Ind Ergon 63:89–97. https://doi.org/10.3357/ASEM.2241.2008 1
doi: 10.1016/j.ergon.2016.11.003
Wan H, Hu S (2003) Correlation o f phasic and tonic skin-conductance responses with severity. Percept Mot Skills 97:1051–1057. https://doi.org/10.3357/ASEM.2241.2008 2
doi: 10.2466/pms.2003.97.3f.1051
pubmed: 15002846
Webb NA, Griffin MJ (2003) Eye movement, vection, and motion sickness with foveal and peripheral vision. Aviat Space Environ Med 74(6):622–625
pubmed: 12793532
Wertheim AH, Bos JE, Bles W (1998) Contributions of roll and pitch to sea sickness. Brain Res Bull 47(5):517–524. https://doi.org/10.3357/ASEM.2241.2008 3
doi: 10.1016/S0361-9230(98)00098-7
pubmed: 10052583
Xsens (2020) MVN user manual. Technical report