Unveiling the Mechanism of Polymer Grafting on Graphene for Functional Composites: The Behavior of Radicals.
electron spin resonance
functional polymers
grafting
graphene oxide
radical
Journal
Macromolecular rapid communications
ISSN: 1521-3927
Titre abrégé: Macromol Rapid Commun
Pays: Germany
ID NLM: 9888239
Informations de publication
Date de publication:
Apr 2021
Apr 2021
Historique:
revised:
08
11
2020
received:
30
09
2020
pubmed:
1
12
2020
medline:
22
6
2021
entrez:
30
11
2020
Statut:
ppublish
Résumé
Polymer-graphene composites have attracted significant attention; however, their formation mechanisms are a focus of debate. This work tries to clarify how grafting occurs on graphene by electron spin resonance techniques. As a result, two pathways are found. One passes through the radicals formed by cleaving CO bonds on graphene are transferred to monomers, then grafting and polymerization proceed. Another mechanism passes through the oxy-radicals, which react with monomers in solution and finally react with carbon radicals on graphene. Based on the mechanism, various types of polymer-graphene composites are prepared, and applied to electrical conductive sheets, basic catalysts, and acidic catalysts.
Identifiants
pubmed: 33251648
doi: 10.1002/marc.202000577
doi:
Substances chimiques
Macromolecular Substances
0
Polymers
0
Graphite
7782-42-5
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2000577Subventions
Organisme : Japan Society for the Promotion of Science
ID : 19H02718
Informations de copyright
© 2020 Wiley-VCH GmbH.
Références
R. J. Young, I. A. Kinloch, L. Gong, K. S. Novoselov, Compos. Sci. Technol. 2012, 72, 1459.
A. Idowu, B. Boesl, A. Agarwal, Carbon 2018, 135, 52.
M. Hada, K. Miyata, S. Ohmura, Y. Arashida, K. Ichiyanagi, I. Katayama, T. Suzuki, W. Chen, S. Mizote, T. Sawa, T. Yokoya, T. Seki, J. Matsuo, T. Tokunaga, C. Itoh, K. Tsuruta, R. Fukaya, S. Nozawa, S.-I. Adachi, J. Takeda, K. Onda, S.-y. Koshihara, Y. Hayashi, Y. Nishina, ACS Nano 2019, 13, 10103.
X. Gao, J. Jang, S. Nagase, J. Phys. Chem. C 2010, 114, 832.
R. Feng, W. Zhou, G. Guan, C. Li, D. Zhang, Y. Xiao, L. Zheng, W. Zhu, J. Mater. Chem. 2012, 22, 3982.
F. Beckert, A. M. Rostas, R. Thomann, S. Weber, E. Schleicher, C. Friedrich, R. Mülhaupt, Macromolecules 2013, 46, 5488.
D. Voylov, T. Saito, B. Lokitz, D. Uhrig, Y. Wang, A. Agapov, A. Holt, V. Bocharova, A. Kisliuk, A. P. Sokolov, ACS Macro Lett. 2016, 5, 199.
N. Morimoto, K. Morioku, H. Suzuki, Y. Nakai, Y. Nishina, Chem. Commun. 2017, 53, 7226.
M. S. Ahmad, Y. Nishina, Nanoscale 2020, 12, 12210.
M. S. Ahmad, H. He, Y. Nishina, Org. Lett. 2019, 21, 8164.
C. Su, M. Acik, K. Takai, J. Lu, S. J. Hao, Y. Zheng, P. Wu, Q. Bao, T. Enoki, Y. J. Chabal, K. P. Loh, Nat. Commun. 2012, 3, 1298.
N. Morimoto, K. Morioku, H. Suzuki, Y. Nakai, Y. Nishina, Chem. Commun. 2017, 53, 7226.
P. V. Kumar, N. M. Bardhan, G.-Y Chen, Z. Li, A. M. Belcher, J. C. Grossman, Carbon 2016, 100, 90.
W. A. Pryor, Annu. Rev. Physiol. 1986, 48, 657.
L. Li, Y. Li, J. Phys. Chem. C 2018, 122, 8780.
H.-G. Korth, P. Mulder, J. Org. Chem. 2015, 80, 8206.
P. Chen, Y. Sun, H. Liu, Y. Zhou, G. Jiang, S. C. Lee, Y. Zhang, F. Dong, Nanoscale 2019, 11, 2366.
W. T. Borden, H. Iwamura, J. A. Berson, Acc. Chem. Res. 1994, 27, 109.
J. M. Fontmorin, R. C. B. Castillo, W. Z. Tang, M. Sillanpää, Water Res. 2016, 99, 24.