Comparative transcriptomic analysis of antimony resistant and susceptible Leishmania infantum lines.


Journal

Parasites & vectors
ISSN: 1756-3305
Titre abrégé: Parasit Vectors
Pays: England
ID NLM: 101462774

Informations de publication

Date de publication:
30 Nov 2020
Historique:
received: 07 08 2020
accepted: 17 11 2020
entrez: 1 12 2020
pubmed: 2 12 2020
medline: 7 8 2021
Statut: epublish

Résumé

One of the major challenges to leishmaniasis treatment is the emergence of parasites resistant to antimony. To study differentially expressed genes associated with drug resistance, we performed a comparative transcriptomic analysis between wild-type and potassium antimonyl tartrate (Sb All the cDNA libraries were constructed from promastigote forms of each line, sequenced and analyzed using STAR for mapping the reads against the reference genome (L. infantum JPCM5) and DESeq2 for differential expression statistical analyses. All the genes were functionally annotated using sequence similarity search. The analytical pipeline considering an adjusted p-value < 0.05 and fold change > 2.0 identified 933 transcripts differentially expressed (DE) between wild-type and Sb The transcriptomic profile of L. infantum showed a robust set of genes from different metabolic pathways associated with the antimony resistance phenotype in this parasite. Our results address the complex and multifactorial antimony resistance mechanisms in Leishmania, identifying several candidate genes that may be further evaluated as molecular targets for chemotherapy of leishmaniasis.

Sections du résumé

BACKGROUND BACKGROUND
One of the major challenges to leishmaniasis treatment is the emergence of parasites resistant to antimony. To study differentially expressed genes associated with drug resistance, we performed a comparative transcriptomic analysis between wild-type and potassium antimonyl tartrate (Sb
METHODS METHODS
All the cDNA libraries were constructed from promastigote forms of each line, sequenced and analyzed using STAR for mapping the reads against the reference genome (L. infantum JPCM5) and DESeq2 for differential expression statistical analyses. All the genes were functionally annotated using sequence similarity search.
RESULTS RESULTS
The analytical pipeline considering an adjusted p-value < 0.05 and fold change > 2.0 identified 933 transcripts differentially expressed (DE) between wild-type and Sb
CONCLUSIONS CONCLUSIONS
The transcriptomic profile of L. infantum showed a robust set of genes from different metabolic pathways associated with the antimony resistance phenotype in this parasite. Our results address the complex and multifactorial antimony resistance mechanisms in Leishmania, identifying several candidate genes that may be further evaluated as molecular targets for chemotherapy of leishmaniasis.

Identifiants

pubmed: 33256787
doi: 10.1186/s13071-020-04486-4
pii: 10.1186/s13071-020-04486-4
pmc: PMC7706067
doi:

Substances chimiques

Antiprotozoal Agents 0
Protozoan Proteins 0
Antimony 9IT35J3UV3

Types de publication

Comparative Study Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

600

Références

World Health Organization. Leishmaniasis overview. https://www.who.int/health-topics/leishmaniasis#tab=tab . Leishmaniasis Key facts. https://www.who.int/news-room/factsheets/detail/leishmaniasis . Accessed 25 June 2020.
Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE. 2012;7:356–71.
doi: 10.1371/journal.pone.0035671
Burza S, Croft SL, Boelaert M. Leishmaniasis. Lancet Lond Engl. 2018;392:951–70.
doi: 10.1016/S0140-6736(18)31204-2
Guerin PJ, Olliaro P, Sundar S, Boelaert M, Croft SL, Desjeux P, et al. Visceral leishmaniasis: current status of control, diagnosis, and treatment, and a proposed research and development agenda. Lancet Infect Dis. 2002;2:494–501.
pubmed: 12150849 doi: 10.1016/S1473-3099(02)00347-X pmcid: 12150849
Shaked-Mishan P, Ulrich N, Ephros M, Zilberstein D. Novel intracellular Sb
pubmed: 11110784 doi: 10.1074/jbc.M005423200
Berman JD, Gallalee JV, Best JM. Sodium stibogluconate (Pentostam) inhibition of glucose catabolism via the glycolytic pathway, and fatty acid beta-oxidation in Leishmania mexicana amastigotes. Biochem Pharmacol. 1987;36:197–201.
pubmed: 3028425 doi: 10.1016/0006-2952(87)90689-7
Wyllie S, Cunningham ML, Fairlamb AH. Dual action of antimonial drugs on thiol redox metabolism in the human pathogen Leishmania donovani. J Biol Chem. 2004;279:39925–32.
pubmed: 15252045 doi: 10.1074/jbc.M405635200
Sereno D, Holzmuller P, Mangot I, Cuny G, Ouaissi A, Lemesre J-L. Antimonial-mediated DNA fragmentation in Leishmania infantum amastigotes. Antimicrob Agents Chemother. 2001;45:2064–9.
pubmed: 11408224 pmcid: 90601 doi: 10.1128/AAC.45.7.2064-2069.2001
Sudhandiran G, Shaha C. Antimonial-induced increase in intracellular Ca
pubmed: 12707265 doi: 10.1074/jbc.M301975200
Frézard F, Silva H, de Castro Pimenta AM, Farrell N, Demicheli C. Greater binding affinity of trivalent antimony to a CCCH zinc finger domain compared to a CCHC domain of kinetoplastid proteins. Met Integr Biometal Sci. 2012;4:433–40.
doi: 10.1039/c2mt00176d
Croft SL, Sundar S, Fairlamb AH. Drug resistance in leishmaniasis. Clin Microbiol Rev. 2006;19:111–26.
pubmed: 16418526 pmcid: 1360270 doi: 10.1128/CMR.19.1.111-126.2006
Croft SL, Olliaro P. Leishmaniasis chemotherapy–challenges and opportunities. Clin Microbiol Infect. 2011;17:1478–83.
pubmed: 21933306 doi: 10.1111/j.1469-0691.2011.03630.x
Sundar S. Drug resistance in Indian visceral leishmaniasis. Trop Med Int Health. 2001;6:849–54.
pubmed: 11703838 doi: 10.1046/j.1365-3156.2001.00778.x
Gourbal B, Sonuc N, Bhattacharjee H, Legare D, Sundar S, Ouellette M, et al. Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J Biol Chem. 2004;279:31010–7.
pubmed: 15138256 doi: 10.1074/jbc.M403959200
Marquis N, Gourbal B, Rosen BP, Mukhopadhyay R, Ouellette M. Modulation in aquaglyceroporin AQP1 gene transcript levels in drug-resistant Leishmania. Mol Microbiol. 2005;57:1690–9.
pubmed: 16135234 doi: 10.1111/j.1365-2958.2005.04782.x
Andrade JM, Baba EH, Machado-de-Avila RA, Chavez-Olortegui C, Demicheli CP, Frézard F, et al. Silver and nitrate oppositely modulate antimony susceptibility through aquaglyceroporin 1 in Leishmania (Viannia) species. Antimicrob Agents Chemother. 2016;60:4482–9.
pubmed: 27161624 pmcid: 4958230 doi: 10.1128/AAC.00768-16
Haimeur A, Brochu C, Genest P-A, Papadopoulou B, Ouellette M. Amplification of the ABC transporter gene PGPA and increased trypanothione levels in potassium antimonyl tartrate (SbIII) resistant Leishmania tarentolae. Mol Biochem Parasitol. 2000;108:131–5.
pubmed: 10802326 doi: 10.1016/S0166-6851(00)00187-0
Légaré D, Richard D, Mukhopadhyay R, Stierhof Y-D, Rosen BP, Haimeur A, et al. The Leishmania ABC protein PGPA is an intracellular metal-thiol transporter ATPase. J Biol Chem. 2001;276:26301–7.
pubmed: 11306588 doi: 10.1074/jbc.M102351200
Perea A, Manzano JI, Castanys S, Gamarro F. The LABCG2 transporter from the protozoan parasite Leishmania is involved in antimony resistance. Antimicrob Agents Chemother. 2016;60:3489–96.
pubmed: 27021316 pmcid: 4879363 doi: 10.1128/AAC.02813-15
Decuypere S, Vanaerschot M, Brunker K, Imamura H, Müller S, Khanal B, et al. Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background. PLoS Negl Trop Dis. 2012;6:1514.
doi: 10.1371/journal.pntd.0001514
do Monte-Neto RL, Coelho AC, Raymond F, Légaré D, Corbeil J, Melo MN, et al. Gene expression profiling and molecular characterization of antimony resistance in Leishmania amazonensis. PLoS Negl Trop Dis. 2011;5:1167.
doi: 10.1371/journal.pntd.0001167
Matrangolo FSV, Liarte DB, Andrade LC, de Melo MF, Andrade JM, Ferreira RF, et al. Comparative proteomic analysis of antimony-resistant and -susceptible Leishmania braziliensis and Leishmania infantum chagasi lines. Mol Biochem Parasitol. 2013;190:63–75.
pubmed: 23831370 doi: 10.1016/j.molbiopara.2013.06.006
Moreira DDS, Pescher P, Laurent C, Lenormand P, Späth GF, Murta SMF. Phosphoproteomic analysis of wild-type and antimony-resistant Leishmania braziliensis lines by 2D-DIGE technology. Proteomics. 2015;15:2999–3019.
doi: 10.1002/pmic.201400611
Maretti-Mira AC, Bittner J, Oliveira-Neto MP, Liu M, Kang D, Li H, et al. Transcriptome patterns from primary cutaneous Leishmania braziliensis infections associated with eventual development of mucosal disease in humans. PLoS Negl Trop Dis. 2012;6:1816.
doi: 10.1371/journal.pntd.0001816
Dillon LAL, Okrah K, Hughitt VK, Suresh R, Li Y, Fernandes MC, et al. Transcriptomic profiling of gene expression and RNA processing during Leishmania major differentiation. Nucleic Acids Res. 2015;43:6799–813.
pubmed: 26150419 pmcid: 4538839 doi: 10.1093/nar/gkv656
Rastrojo A, Carrasco-Ramiro F, Martín D, Crespillo A, Reguera RM, Aguado B, et al. The transcriptome of Leishmania major in the axenic promastigote stage: transcript annotation and relative expression levels by RNA-seq. BMC Genom. 2013;14:223.
doi: 10.1186/1471-2164-14-223
Patino LH, Muskus C, Ramírez JD. Transcriptional responses of Leishmania (Leishmania) amazonensis in the presence of trivalent sodium stibogluconate. Parasites Vectors. 2019;12:348.
pubmed: 31300064 pmcid: 6626383 doi: 10.1186/s13071-019-3603-8
Patino LH, Imamura H, Cruz-Saavedra L, Pavia P, Muskus C, Méndez C, et al. Major changes in chromosomal somy, gene expression and gene dosage driven by Sb
pubmed: 31263131 pmcid: 6603004 doi: 10.1038/s41598-019-45538-9
Liarte DB, Murta SMF. Selection and phenotype characterization of potassium antimony tartrate-resistant populations of four New World Leishmania species. Parasitol Res. 2010;107:205–12.
pubmed: 20372925 doi: 10.1007/s00436-010-1852-8
la Fuente SG, Peiró-Pastor R, Rastrojo A, Moreno J, Carrasco-Ramiro F, Requena JM, et al. Resequencing of the Leishmania infantum (strain JPCM5) genome and de novo assembly into 36 contigs. Sci Rep. 2017;7:18050.
doi: 10.1038/s41598-017-18374-y
Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinform Oxf Engl. 2011;27:863–4.
doi: 10.1093/bioinformatics/btr026
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinform Oxf Engl. 2014;30:2114–20.
doi: 10.1093/bioinformatics/btu170
Dobin A, Gingeras TR. Mapping RNA-seq reads with STAR. Curr Protoc Bioinform. 2015;51:11–4.
doi: 10.1002/0471250953.bi1114s51
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
pubmed: 19505943 pmcid: 19505943 doi: 10.1093/bioinformatics/btp352
Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–6.
pubmed: 21221095 pmcid: 3346182 doi: 10.1038/nbt.1754
Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2014;31:166–9.
pubmed: 25260700 pmcid: 4287950 doi: 10.1093/bioinformatics/btu638
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–6.
pubmed: 16081474 doi: 10.1093/bioinformatics/bti610 pmcid: 16081474
Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008;36:3420–35.
pubmed: 18445632 pmcid: 2425479 doi: 10.1093/nar/gkn176
The Gene Ontology Consortium. Gene Ontology Consortium: going forward. Nucleic Acids Res. 2015;43:1049–56.
doi: 10.1093/nar/gku1179
Fonseca MS, Comini MA, Resende BV, Santi AMM, Zoboli AP, Moreira DS, et al. Ornithine decarboxylase or gamma-glutamylcysteine synthetase overexpression protects Leishmania (Vianna) guyanensis against antimony. Exp Parasitol. 2017;175:36–43.
pubmed: 28167207 doi: 10.1016/j.exppara.2017.02.001
Moreira DS, Murta SM. Involvement of nucleoside diphosphate kinase b and elongation factor 2 in Leishmania braziliensis antimony resistance phenotype. Parasites Vectors. 2016;9:641.
pubmed: 27964761 pmcid: 5155413 doi: 10.1186/s13071-016-1930-6
Ribeiro CV, Rocha BFB, Moreira DDS, Peruhype-Magalhães V, Murta SMF. Mannosyltransferase (GPI-14) overexpression protects promastigote and amastigote forms of Leishmania braziliensis against trivalent antimony. Parasites Vectors. 2019;12:60.
pubmed: 30683152 pmcid: 6346506 doi: 10.1186/s13071-019-3305-2
Naula C, Parsons M, Mottram JC. Protein kinases as drug targets in trypanosomes and Leishmania. Biochim Biophys Acta BBA Proteins Proteom. 2005;1754:151–9.
doi: 10.1016/j.bbapap.2005.08.018
Ardito F, Giuliani M, Perrone D, Troiano G, Muzio LL. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy. Int J Mol Med. 2017;40:271–80.
pubmed: 28656226 pmcid: 5500920 doi: 10.3892/ijmm.2017.3036
Chamakh-Ayari R, Chenik M, Chakroun AS, Bahi-Jaber N, Aoun K, Meddeb-Garnaoui A. Leishmania major large RAB GTPase is highly immunogenic in individuals immune to cutaneous and visceral leishmaniasis. Parasites Vectors. 2017;10:185.
pubmed: 28416006 pmcid: 5393016 doi: 10.1186/s13071-017-2127-3
Chauhan IS, Rao GS, Singh N. Enhancing the copy number of Ldrab6 gene in Leishmania donovani parasites mediates drug resistance through drug thiol conjugate dependent multidrug resistance protein A (MRPA). Acta Trop. 2019;199:105158.
pubmed: 31491399 doi: 10.1016/j.actatropica.2019.105158
Ryazanov AG, Davydova EK. Mechanism of elongation factor 2 (EF-2) inactivation upon phosphorylation phosphorylated EF-2 is unable to catalyze translocation. FEBS Lett. 1989;251:187–90.
pubmed: 2753158 doi: 10.1016/0014-5793(89)81452-8
Marín I. RBR ubiquitin ligases: diversification and streamlining in animal lineages. J Mol Evol. 2009;69:54–64.
pubmed: 19526189 doi: 10.1007/s00239-009-9252-3
Kazemi-Rad E, Mohebali M, Khadem-Erfan MB, Hajjaran H, Hadighi R, Khamesipour A, et al. Overexpression of ubiquitin and amino acid permease genes in association with antimony resistance in Leishmania tropica field isolates. Korean J Parasitol. 2013;51:413–9.
pubmed: 24039283 pmcid: 3770871 doi: 10.3347/kjp.2013.51.4.413
Laity JH, Lee BM, Wright PE. Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol. 2001;11:39–46.
pubmed: 11179890 doi: 10.1016/S0959-440X(00)00167-6
Demicheli C, Frézard F, Mangrum JB, Farrell NP. Interaction of trivalent antimony with a CCHC zinc finger domain: potential relevance to the mechanism of action of antimonial drugs. Chem Commun. 2008;39:4828–30.
doi: 10.1039/b809186b
Kutateladze T. Phosphatidylinositol 3-phosphate recognition and membrane docking by the FYVE domain. Biochim Biophys Acta BBA Mol Cell Biol Lipids. 2006;1761:868–77.
Denny PW, Goulding D, Ferguson MAJ, Smith DF. Sphingolipid-free Leishmania are defective in membrane trafficking, differentiation and infectivity. Mol Microbiol. 2004;52:313–27.
pubmed: 15066023 doi: 10.1111/j.1365-2958.2003.03975.x
t’Kindt R, Scheltema RA, Jankevics A, Brunker K, Rijal S, Dujardin J-C, et al. Metabolomics to unveil and understand phenotypic diversity between pathogen populations. PLoS Negl Trop Dis. 2010;4:904.
doi: 10.1371/journal.pntd.0000904
Zhang K, Beverley SM. Phospholipid and sphingolipid metabolism in Leishmania. Mol Biochem Parasitol. 2010;170:55–64.
pubmed: 20026359 doi: 10.1016/j.molbiopara.2009.12.004
Moller JV, Juul B, le Maire M. Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta. 1996;1286:1–51.
pubmed: 8634322 doi: 10.1016/0304-4157(95)00017-8
Padmanabhan PK, Zghidi-Abouzid O, Samant M, Dumas C, Aguiar BG, Estaquier J, et al. DDX3 DEAD-box RNA helicase plays a central role in mitochondrial protein quality control in Leishmania. Cell Death Dis. 2016;7:2406.
doi: 10.1038/cddis.2016.315
Ouameur A, Girard I, Legare D, Ouellette M. Functional analysis and complex gene rearrangements of the folate/biopterin transporter (FBT) gene family in the protozoan parasite Leishmania. Mol Biochem Parasitol. 2008;162:155–64.
pubmed: 18796316 doi: 10.1016/j.molbiopara.2008.08.007
Fernandez-Prada C, Vincent IM, Brotherton M-C, Roberts M, Roy G, Rivas L, et al. Different mutations in a P-type ATPase transporter in Leishmania parasites are associated with cross-resistance to two leading drugs by distinct mechanisms. PLoS Negl Trop Dis. 2016;10:0005171.
doi: 10.1371/journal.pntd.0005171
Young JC, Agashe VR, Siegers K, Hartl FU. Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol. 2004;5:781–91.
pubmed: 15459659 doi: 10.1038/nrm1492
Folgueira C, Requena JM. A postgenomic view of the heat shock proteins in kinetoplastids. FEMS Microbiol Rev. 2007;31:359–77.
pubmed: 17459115 doi: 10.1111/j.1574-6976.2007.00069.x
Vergnes B, Gourbal B, Girard I, Sundar S, Drummelsmith J, Ouellette M. A Proteomics screen implicates HSP83 and a small kinetoplastid calpain-related protein in drug resistance in Leishmania donovani clinical field isolates by modulating drug-induced programmed cell death. Mol Cell Proteom. 2007;6:88–101.
doi: 10.1074/mcp.M600319-MCP200
Biyani N, Singh AK, Mandal S, Chawla B, Madhubala R. Differential expression of proteins in antimony-susceptible and -resistant isolates of Leishmania donovani. Mol Biochem Parasitol. 2011;179:91–9.
pubmed: 21736901 doi: 10.1016/j.molbiopara.2011.06.004
Kumar D, Singh R, Bhandari V, Kulshrestha A, Negi NS, Salotra P. Biomarkers of antimony resistance: need for expression analysis of multiple genes to distinguish resistance phenotype in clinical isolates of Leishmania donovani. Parasitol Res. 2012;111:223–30.
pubmed: 22302478 doi: 10.1007/s00436-012-2823-z
Brotherton M-C, Bourassa S, Légaré D, Poirier GG, Droit A, Ouellette M. Quantitative proteomic analysis of amphotericin B resistance in Leishmania infantum. Int J Parasitol Drugs Drug Resist. 2014;4:126–32.
pubmed: 25057462 pmcid: 4095042 doi: 10.1016/j.ijpddr.2014.05.002
Requena JM, Montalvo AM, Fraga J. Molecular chaperones of Leishmania : central players in many stress-related and -unrelated physiological processes. BioMed Res Int. 2015;2015:1–21.
doi: 10.1155/2015/301326
Tsigankov P, Gherardini PF, Helmer-Citterich M, Späth GF, Myler PJ, Zilberstein D. Regulation dynamics of Leishmania differentiation: deconvoluting signals and identifying phosphorylation trends. Mol Cell Proteom. 2014;13:1787–99.
doi: 10.1074/mcp.M114.037705
Verma A, Ghosh S, Salotra P, Singh R. Artemisinin-resistant Leishmania parasite modulates host cell defense mechanism and exhibits altered expression of unfolded protein response genes. Parasitol Res. 2019;118:2705–13.
pubmed: 31359134 doi: 10.1007/s00436-019-06404-9
Higgins CF. ABC transporters: from microorganisms to man. Annu Rev Cell Biol. 1992;8:67–113.
pubmed: 1282354 doi: 10.1146/annurev.cb.08.110192.000435 pmcid: 1282354
Ouellette M, Légaré D, Haimeur A, Grondin K, Roy G, Brochu C, et al. ABC transporters in Leishmania and their role in drug resistance. Drug Resist Updates. 1998;1:43–8.
doi: 10.1016/S1368-7646(98)80213-6
Moreira DS, Monte Neto RL, Andrade JM, Santi AMM, Reis PG, Frézard F, et al. Molecular characterization of the MRPA transporter and antimony uptake in four New World Leishmania spp. susceptible and resistant to antimony. Int J Parasitol Drugs Drug Resist. 2013;3:143–53.
pubmed: 24533304 pmcid: 3862441 doi: 10.1016/j.ijpddr.2013.08.001
Douanne N, Wagner V, Roy G, Leprohon P, Ouellette M, Fernandez-Prada C. MRPA-independent mechanisms of antimony resistance in Leishmania infantum. Int J Parasitol Drugs Drug Resist. 2020;13:28–37.
pubmed: 32413766 pmcid: 7225602 doi: 10.1016/j.ijpddr.2020.03.003
Singh S, Mandlik V. Structure based investigation on the binding interaction of transport proteins in leishmaniasis: insights from molecular simulation. Mol Biosyst. 2015;11:1251–9.
pubmed: 25761976 doi: 10.1039/C4MB00713A pmcid: 25761976
Clayton C, Shapira M. Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Mol Biochem Parasitol. 2007;156:93–101.
pubmed: 17765983 doi: 10.1016/j.molbiopara.2007.07.007 pmcid: 17765983
Lunde BM, Moore C, Varani G. RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol. 2007;8:479–90.
pubmed: 17473849 pmcid: 5507177 doi: 10.1038/nrm2178
Kumar A, Sisodia B, Misra P, Sundar S, Shasany AK, Dube A. Proteome mapping of overexpressed membrane-enriched and cytosolic proteins in sodium antimony gluconate (SAG) resistant clinical isolate of Leishmania donovani: overexpressed proteins in SAG resistant L. donovani. Br J Clin Pharmacol. 2010;70:609–17.
pubmed: 20840452 pmcid: 2950996 doi: 10.1111/j.1365-2125.2010.03716.x
Das S, Shah P, Baharia RK, Tandon R, Khare P, Sundar S, et al. over-expression of 60s ribosomal L23a is associated with cellular proliferation in SAG resistant clinical isolates of Leishmania donovani. PLoS Negl Trop Dis. 2013;7:2527.
doi: 10.1371/journal.pntd.0002527
Schenkman JB, Jansson I. The many roles of cytochrome b5. Pharmacol Ther. 2003;97:139–52.
pubmed: 12559387 doi: 10.1016/S0163-7258(02)00327-3 pmcid: 12559387
Mukherjee S, Santara SS, Das S, Bose M, Roy J, Adak S. NAD(P)H cytochrome b5 oxidoreductase deficiency in Leishmania major results in impaired linoleate synthesis followed by Increased oxidative stress and cell death. J Biol Chem. 2012;287:34992–5003.
pubmed: 22923617 pmcid: 3471740 doi: 10.1074/jbc.M112.389338
Mukherjee A, Roy G, Guimond C, Ouellette M. The γ-glutamylcysteine synthetase gene of Leishmania is essential and involved in response to oxidants. Mol Microbiol. 2009;74:914–27.
pubmed: 19818018 doi: 10.1111/j.1365-2958.2009.06907.x
Guimond C, Trudel N, Brochu C, Marquis N, El Fadili A, Peytavi R, et al. Modulation of gene expression in Leishmania drug resistant mutants as determined by targeted DNA microarrays. Nucleic Acids Res. 2003;31:5886–96.
pubmed: 14530437 pmcid: 219483 doi: 10.1093/nar/gkg806
Mukherjee A, Padmanabhan PK, Singh S, Roy G, Girard I, Chatterjee M, et al. Role of ABC transporter MRPA, γ-glutamylcysteine synthetase and ornithine decarboxylase in natural antimony-resistant isolates of Leishmania donovani. J Antimicrob Chemother. 2007;59:204–11.
pubmed: 17213267 doi: 10.1093/jac/dkl494

Auteurs

Juvana Moreira Andrade (JM)

Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil.

Leilane Oliveira Gonçalves (LO)

Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil.
Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil.

Daniel Barbosa Liarte (DB)

Universidade Federal do Piauí, Teresina, PI, Brazil.

Davi Alvarenga Lima (DA)

Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil.
Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil.

Frederico Gonçalves Guimarães (FG)

Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil.

Daniela de Melo Resende (D)

Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil.
Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil.

Ana Maria Murta Santi (AMM)

Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil.

Luciana Marcia de Oliveira (LM)

Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Paris, France.

João Paulo Linhares Velloso (JPL)

Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil.

Renato Guimarães Delfino (RG)

Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil.

Pascale Pescher (P)

Unité de Parasitologie moléculaire et Signalisation, Département de Parasitologie et Mycologie, Institut Pasteur, Paris, France.

Gerald F Späth (GF)

Unité de Parasitologie moléculaire et Signalisation, Département de Parasitologie et Mycologie, Institut Pasteur, Paris, France.

Jeronimo Conceição Ruiz (JC)

Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil. jeronimo.ruiz@fiocruz.br.
Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil. jeronimo.ruiz@fiocruz.br.

Silvane Maria Fonseca Murta (SMF)

Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil. silvane.murta@fiocruz.br.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH