Comparative transcriptomic analysis of antimony resistant and susceptible Leishmania infantum lines.
Differentially expressed genes
Leishmania infantum
RNA sequencing
Resistance
Transcriptome
Trivalent antimony
Journal
Parasites & vectors
ISSN: 1756-3305
Titre abrégé: Parasit Vectors
Pays: England
ID NLM: 101462774
Informations de publication
Date de publication:
30 Nov 2020
30 Nov 2020
Historique:
received:
07
08
2020
accepted:
17
11
2020
entrez:
1
12
2020
pubmed:
2
12
2020
medline:
7
8
2021
Statut:
epublish
Résumé
One of the major challenges to leishmaniasis treatment is the emergence of parasites resistant to antimony. To study differentially expressed genes associated with drug resistance, we performed a comparative transcriptomic analysis between wild-type and potassium antimonyl tartrate (Sb All the cDNA libraries were constructed from promastigote forms of each line, sequenced and analyzed using STAR for mapping the reads against the reference genome (L. infantum JPCM5) and DESeq2 for differential expression statistical analyses. All the genes were functionally annotated using sequence similarity search. The analytical pipeline considering an adjusted p-value < 0.05 and fold change > 2.0 identified 933 transcripts differentially expressed (DE) between wild-type and Sb The transcriptomic profile of L. infantum showed a robust set of genes from different metabolic pathways associated with the antimony resistance phenotype in this parasite. Our results address the complex and multifactorial antimony resistance mechanisms in Leishmania, identifying several candidate genes that may be further evaluated as molecular targets for chemotherapy of leishmaniasis.
Sections du résumé
BACKGROUND
BACKGROUND
One of the major challenges to leishmaniasis treatment is the emergence of parasites resistant to antimony. To study differentially expressed genes associated with drug resistance, we performed a comparative transcriptomic analysis between wild-type and potassium antimonyl tartrate (Sb
METHODS
METHODS
All the cDNA libraries were constructed from promastigote forms of each line, sequenced and analyzed using STAR for mapping the reads against the reference genome (L. infantum JPCM5) and DESeq2 for differential expression statistical analyses. All the genes were functionally annotated using sequence similarity search.
RESULTS
RESULTS
The analytical pipeline considering an adjusted p-value < 0.05 and fold change > 2.0 identified 933 transcripts differentially expressed (DE) between wild-type and Sb
CONCLUSIONS
CONCLUSIONS
The transcriptomic profile of L. infantum showed a robust set of genes from different metabolic pathways associated with the antimony resistance phenotype in this parasite. Our results address the complex and multifactorial antimony resistance mechanisms in Leishmania, identifying several candidate genes that may be further evaluated as molecular targets for chemotherapy of leishmaniasis.
Identifiants
pubmed: 33256787
doi: 10.1186/s13071-020-04486-4
pii: 10.1186/s13071-020-04486-4
pmc: PMC7706067
doi:
Substances chimiques
Antiprotozoal Agents
0
Protozoan Proteins
0
Antimony
9IT35J3UV3
Types de publication
Comparative Study
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
600Références
World Health Organization. Leishmaniasis overview. https://www.who.int/health-topics/leishmaniasis#tab=tab . Leishmaniasis Key facts. https://www.who.int/news-room/factsheets/detail/leishmaniasis . Accessed 25 June 2020.
Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE. 2012;7:356–71.
doi: 10.1371/journal.pone.0035671
Burza S, Croft SL, Boelaert M. Leishmaniasis. Lancet Lond Engl. 2018;392:951–70.
doi: 10.1016/S0140-6736(18)31204-2
Guerin PJ, Olliaro P, Sundar S, Boelaert M, Croft SL, Desjeux P, et al. Visceral leishmaniasis: current status of control, diagnosis, and treatment, and a proposed research and development agenda. Lancet Infect Dis. 2002;2:494–501.
pubmed: 12150849
doi: 10.1016/S1473-3099(02)00347-X
pmcid: 12150849
Shaked-Mishan P, Ulrich N, Ephros M, Zilberstein D. Novel intracellular Sb
pubmed: 11110784
doi: 10.1074/jbc.M005423200
Berman JD, Gallalee JV, Best JM. Sodium stibogluconate (Pentostam) inhibition of glucose catabolism via the glycolytic pathway, and fatty acid beta-oxidation in Leishmania mexicana amastigotes. Biochem Pharmacol. 1987;36:197–201.
pubmed: 3028425
doi: 10.1016/0006-2952(87)90689-7
Wyllie S, Cunningham ML, Fairlamb AH. Dual action of antimonial drugs on thiol redox metabolism in the human pathogen Leishmania donovani. J Biol Chem. 2004;279:39925–32.
pubmed: 15252045
doi: 10.1074/jbc.M405635200
Sereno D, Holzmuller P, Mangot I, Cuny G, Ouaissi A, Lemesre J-L. Antimonial-mediated DNA fragmentation in Leishmania infantum amastigotes. Antimicrob Agents Chemother. 2001;45:2064–9.
pubmed: 11408224
pmcid: 90601
doi: 10.1128/AAC.45.7.2064-2069.2001
Sudhandiran G, Shaha C. Antimonial-induced increase in intracellular Ca
pubmed: 12707265
doi: 10.1074/jbc.M301975200
Frézard F, Silva H, de Castro Pimenta AM, Farrell N, Demicheli C. Greater binding affinity of trivalent antimony to a CCCH zinc finger domain compared to a CCHC domain of kinetoplastid proteins. Met Integr Biometal Sci. 2012;4:433–40.
doi: 10.1039/c2mt00176d
Croft SL, Sundar S, Fairlamb AH. Drug resistance in leishmaniasis. Clin Microbiol Rev. 2006;19:111–26.
pubmed: 16418526
pmcid: 1360270
doi: 10.1128/CMR.19.1.111-126.2006
Croft SL, Olliaro P. Leishmaniasis chemotherapy–challenges and opportunities. Clin Microbiol Infect. 2011;17:1478–83.
pubmed: 21933306
doi: 10.1111/j.1469-0691.2011.03630.x
Sundar S. Drug resistance in Indian visceral leishmaniasis. Trop Med Int Health. 2001;6:849–54.
pubmed: 11703838
doi: 10.1046/j.1365-3156.2001.00778.x
Gourbal B, Sonuc N, Bhattacharjee H, Legare D, Sundar S, Ouellette M, et al. Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J Biol Chem. 2004;279:31010–7.
pubmed: 15138256
doi: 10.1074/jbc.M403959200
Marquis N, Gourbal B, Rosen BP, Mukhopadhyay R, Ouellette M. Modulation in aquaglyceroporin AQP1 gene transcript levels in drug-resistant Leishmania. Mol Microbiol. 2005;57:1690–9.
pubmed: 16135234
doi: 10.1111/j.1365-2958.2005.04782.x
Andrade JM, Baba EH, Machado-de-Avila RA, Chavez-Olortegui C, Demicheli CP, Frézard F, et al. Silver and nitrate oppositely modulate antimony susceptibility through aquaglyceroporin 1 in Leishmania (Viannia) species. Antimicrob Agents Chemother. 2016;60:4482–9.
pubmed: 27161624
pmcid: 4958230
doi: 10.1128/AAC.00768-16
Haimeur A, Brochu C, Genest P-A, Papadopoulou B, Ouellette M. Amplification of the ABC transporter gene PGPA and increased trypanothione levels in potassium antimonyl tartrate (SbIII) resistant Leishmania tarentolae. Mol Biochem Parasitol. 2000;108:131–5.
pubmed: 10802326
doi: 10.1016/S0166-6851(00)00187-0
Légaré D, Richard D, Mukhopadhyay R, Stierhof Y-D, Rosen BP, Haimeur A, et al. The Leishmania ABC protein PGPA is an intracellular metal-thiol transporter ATPase. J Biol Chem. 2001;276:26301–7.
pubmed: 11306588
doi: 10.1074/jbc.M102351200
Perea A, Manzano JI, Castanys S, Gamarro F. The LABCG2 transporter from the protozoan parasite Leishmania is involved in antimony resistance. Antimicrob Agents Chemother. 2016;60:3489–96.
pubmed: 27021316
pmcid: 4879363
doi: 10.1128/AAC.02813-15
Decuypere S, Vanaerschot M, Brunker K, Imamura H, Müller S, Khanal B, et al. Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background. PLoS Negl Trop Dis. 2012;6:1514.
doi: 10.1371/journal.pntd.0001514
do Monte-Neto RL, Coelho AC, Raymond F, Légaré D, Corbeil J, Melo MN, et al. Gene expression profiling and molecular characterization of antimony resistance in Leishmania amazonensis. PLoS Negl Trop Dis. 2011;5:1167.
doi: 10.1371/journal.pntd.0001167
Matrangolo FSV, Liarte DB, Andrade LC, de Melo MF, Andrade JM, Ferreira RF, et al. Comparative proteomic analysis of antimony-resistant and -susceptible Leishmania braziliensis and Leishmania infantum chagasi lines. Mol Biochem Parasitol. 2013;190:63–75.
pubmed: 23831370
doi: 10.1016/j.molbiopara.2013.06.006
Moreira DDS, Pescher P, Laurent C, Lenormand P, Späth GF, Murta SMF. Phosphoproteomic analysis of wild-type and antimony-resistant Leishmania braziliensis lines by 2D-DIGE technology. Proteomics. 2015;15:2999–3019.
doi: 10.1002/pmic.201400611
Maretti-Mira AC, Bittner J, Oliveira-Neto MP, Liu M, Kang D, Li H, et al. Transcriptome patterns from primary cutaneous Leishmania braziliensis infections associated with eventual development of mucosal disease in humans. PLoS Negl Trop Dis. 2012;6:1816.
doi: 10.1371/journal.pntd.0001816
Dillon LAL, Okrah K, Hughitt VK, Suresh R, Li Y, Fernandes MC, et al. Transcriptomic profiling of gene expression and RNA processing during Leishmania major differentiation. Nucleic Acids Res. 2015;43:6799–813.
pubmed: 26150419
pmcid: 4538839
doi: 10.1093/nar/gkv656
Rastrojo A, Carrasco-Ramiro F, Martín D, Crespillo A, Reguera RM, Aguado B, et al. The transcriptome of Leishmania major in the axenic promastigote stage: transcript annotation and relative expression levels by RNA-seq. BMC Genom. 2013;14:223.
doi: 10.1186/1471-2164-14-223
Patino LH, Muskus C, Ramírez JD. Transcriptional responses of Leishmania (Leishmania) amazonensis in the presence of trivalent sodium stibogluconate. Parasites Vectors. 2019;12:348.
pubmed: 31300064
pmcid: 6626383
doi: 10.1186/s13071-019-3603-8
Patino LH, Imamura H, Cruz-Saavedra L, Pavia P, Muskus C, Méndez C, et al. Major changes in chromosomal somy, gene expression and gene dosage driven by Sb
pubmed: 31263131
pmcid: 6603004
doi: 10.1038/s41598-019-45538-9
Liarte DB, Murta SMF. Selection and phenotype characterization of potassium antimony tartrate-resistant populations of four New World Leishmania species. Parasitol Res. 2010;107:205–12.
pubmed: 20372925
doi: 10.1007/s00436-010-1852-8
la Fuente SG, Peiró-Pastor R, Rastrojo A, Moreno J, Carrasco-Ramiro F, Requena JM, et al. Resequencing of the Leishmania infantum (strain JPCM5) genome and de novo assembly into 36 contigs. Sci Rep. 2017;7:18050.
doi: 10.1038/s41598-017-18374-y
Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinform Oxf Engl. 2011;27:863–4.
doi: 10.1093/bioinformatics/btr026
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinform Oxf Engl. 2014;30:2114–20.
doi: 10.1093/bioinformatics/btu170
Dobin A, Gingeras TR. Mapping RNA-seq reads with STAR. Curr Protoc Bioinform. 2015;51:11–4.
doi: 10.1002/0471250953.bi1114s51
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
pubmed: 19505943
pmcid: 19505943
doi: 10.1093/bioinformatics/btp352
Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–6.
pubmed: 21221095
pmcid: 3346182
doi: 10.1038/nbt.1754
Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2014;31:166–9.
pubmed: 25260700
pmcid: 4287950
doi: 10.1093/bioinformatics/btu638
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–6.
pubmed: 16081474
doi: 10.1093/bioinformatics/bti610
pmcid: 16081474
Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008;36:3420–35.
pubmed: 18445632
pmcid: 2425479
doi: 10.1093/nar/gkn176
The Gene Ontology Consortium. Gene Ontology Consortium: going forward. Nucleic Acids Res. 2015;43:1049–56.
doi: 10.1093/nar/gku1179
Fonseca MS, Comini MA, Resende BV, Santi AMM, Zoboli AP, Moreira DS, et al. Ornithine decarboxylase or gamma-glutamylcysteine synthetase overexpression protects Leishmania (Vianna) guyanensis against antimony. Exp Parasitol. 2017;175:36–43.
pubmed: 28167207
doi: 10.1016/j.exppara.2017.02.001
Moreira DS, Murta SM. Involvement of nucleoside diphosphate kinase b and elongation factor 2 in Leishmania braziliensis antimony resistance phenotype. Parasites Vectors. 2016;9:641.
pubmed: 27964761
pmcid: 5155413
doi: 10.1186/s13071-016-1930-6
Ribeiro CV, Rocha BFB, Moreira DDS, Peruhype-Magalhães V, Murta SMF. Mannosyltransferase (GPI-14) overexpression protects promastigote and amastigote forms of Leishmania braziliensis against trivalent antimony. Parasites Vectors. 2019;12:60.
pubmed: 30683152
pmcid: 6346506
doi: 10.1186/s13071-019-3305-2
Naula C, Parsons M, Mottram JC. Protein kinases as drug targets in trypanosomes and Leishmania. Biochim Biophys Acta BBA Proteins Proteom. 2005;1754:151–9.
doi: 10.1016/j.bbapap.2005.08.018
Ardito F, Giuliani M, Perrone D, Troiano G, Muzio LL. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy. Int J Mol Med. 2017;40:271–80.
pubmed: 28656226
pmcid: 5500920
doi: 10.3892/ijmm.2017.3036
Chamakh-Ayari R, Chenik M, Chakroun AS, Bahi-Jaber N, Aoun K, Meddeb-Garnaoui A. Leishmania major large RAB GTPase is highly immunogenic in individuals immune to cutaneous and visceral leishmaniasis. Parasites Vectors. 2017;10:185.
pubmed: 28416006
pmcid: 5393016
doi: 10.1186/s13071-017-2127-3
Chauhan IS, Rao GS, Singh N. Enhancing the copy number of Ldrab6 gene in Leishmania donovani parasites mediates drug resistance through drug thiol conjugate dependent multidrug resistance protein A (MRPA). Acta Trop. 2019;199:105158.
pubmed: 31491399
doi: 10.1016/j.actatropica.2019.105158
Ryazanov AG, Davydova EK. Mechanism of elongation factor 2 (EF-2) inactivation upon phosphorylation phosphorylated EF-2 is unable to catalyze translocation. FEBS Lett. 1989;251:187–90.
pubmed: 2753158
doi: 10.1016/0014-5793(89)81452-8
Marín I. RBR ubiquitin ligases: diversification and streamlining in animal lineages. J Mol Evol. 2009;69:54–64.
pubmed: 19526189
doi: 10.1007/s00239-009-9252-3
Kazemi-Rad E, Mohebali M, Khadem-Erfan MB, Hajjaran H, Hadighi R, Khamesipour A, et al. Overexpression of ubiquitin and amino acid permease genes in association with antimony resistance in Leishmania tropica field isolates. Korean J Parasitol. 2013;51:413–9.
pubmed: 24039283
pmcid: 3770871
doi: 10.3347/kjp.2013.51.4.413
Laity JH, Lee BM, Wright PE. Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol. 2001;11:39–46.
pubmed: 11179890
doi: 10.1016/S0959-440X(00)00167-6
Demicheli C, Frézard F, Mangrum JB, Farrell NP. Interaction of trivalent antimony with a CCHC zinc finger domain: potential relevance to the mechanism of action of antimonial drugs. Chem Commun. 2008;39:4828–30.
doi: 10.1039/b809186b
Kutateladze T. Phosphatidylinositol 3-phosphate recognition and membrane docking by the FYVE domain. Biochim Biophys Acta BBA Mol Cell Biol Lipids. 2006;1761:868–77.
Denny PW, Goulding D, Ferguson MAJ, Smith DF. Sphingolipid-free Leishmania are defective in membrane trafficking, differentiation and infectivity. Mol Microbiol. 2004;52:313–27.
pubmed: 15066023
doi: 10.1111/j.1365-2958.2003.03975.x
t’Kindt R, Scheltema RA, Jankevics A, Brunker K, Rijal S, Dujardin J-C, et al. Metabolomics to unveil and understand phenotypic diversity between pathogen populations. PLoS Negl Trop Dis. 2010;4:904.
doi: 10.1371/journal.pntd.0000904
Zhang K, Beverley SM. Phospholipid and sphingolipid metabolism in Leishmania. Mol Biochem Parasitol. 2010;170:55–64.
pubmed: 20026359
doi: 10.1016/j.molbiopara.2009.12.004
Moller JV, Juul B, le Maire M. Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta. 1996;1286:1–51.
pubmed: 8634322
doi: 10.1016/0304-4157(95)00017-8
Padmanabhan PK, Zghidi-Abouzid O, Samant M, Dumas C, Aguiar BG, Estaquier J, et al. DDX3 DEAD-box RNA helicase plays a central role in mitochondrial protein quality control in Leishmania. Cell Death Dis. 2016;7:2406.
doi: 10.1038/cddis.2016.315
Ouameur A, Girard I, Legare D, Ouellette M. Functional analysis and complex gene rearrangements of the folate/biopterin transporter (FBT) gene family in the protozoan parasite Leishmania. Mol Biochem Parasitol. 2008;162:155–64.
pubmed: 18796316
doi: 10.1016/j.molbiopara.2008.08.007
Fernandez-Prada C, Vincent IM, Brotherton M-C, Roberts M, Roy G, Rivas L, et al. Different mutations in a P-type ATPase transporter in Leishmania parasites are associated with cross-resistance to two leading drugs by distinct mechanisms. PLoS Negl Trop Dis. 2016;10:0005171.
doi: 10.1371/journal.pntd.0005171
Young JC, Agashe VR, Siegers K, Hartl FU. Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol. 2004;5:781–91.
pubmed: 15459659
doi: 10.1038/nrm1492
Folgueira C, Requena JM. A postgenomic view of the heat shock proteins in kinetoplastids. FEMS Microbiol Rev. 2007;31:359–77.
pubmed: 17459115
doi: 10.1111/j.1574-6976.2007.00069.x
Vergnes B, Gourbal B, Girard I, Sundar S, Drummelsmith J, Ouellette M. A Proteomics screen implicates HSP83 and a small kinetoplastid calpain-related protein in drug resistance in Leishmania donovani clinical field isolates by modulating drug-induced programmed cell death. Mol Cell Proteom. 2007;6:88–101.
doi: 10.1074/mcp.M600319-MCP200
Biyani N, Singh AK, Mandal S, Chawla B, Madhubala R. Differential expression of proteins in antimony-susceptible and -resistant isolates of Leishmania donovani. Mol Biochem Parasitol. 2011;179:91–9.
pubmed: 21736901
doi: 10.1016/j.molbiopara.2011.06.004
Kumar D, Singh R, Bhandari V, Kulshrestha A, Negi NS, Salotra P. Biomarkers of antimony resistance: need for expression analysis of multiple genes to distinguish resistance phenotype in clinical isolates of Leishmania donovani. Parasitol Res. 2012;111:223–30.
pubmed: 22302478
doi: 10.1007/s00436-012-2823-z
Brotherton M-C, Bourassa S, Légaré D, Poirier GG, Droit A, Ouellette M. Quantitative proteomic analysis of amphotericin B resistance in Leishmania infantum. Int J Parasitol Drugs Drug Resist. 2014;4:126–32.
pubmed: 25057462
pmcid: 4095042
doi: 10.1016/j.ijpddr.2014.05.002
Requena JM, Montalvo AM, Fraga J. Molecular chaperones of Leishmania : central players in many stress-related and -unrelated physiological processes. BioMed Res Int. 2015;2015:1–21.
doi: 10.1155/2015/301326
Tsigankov P, Gherardini PF, Helmer-Citterich M, Späth GF, Myler PJ, Zilberstein D. Regulation dynamics of Leishmania differentiation: deconvoluting signals and identifying phosphorylation trends. Mol Cell Proteom. 2014;13:1787–99.
doi: 10.1074/mcp.M114.037705
Verma A, Ghosh S, Salotra P, Singh R. Artemisinin-resistant Leishmania parasite modulates host cell defense mechanism and exhibits altered expression of unfolded protein response genes. Parasitol Res. 2019;118:2705–13.
pubmed: 31359134
doi: 10.1007/s00436-019-06404-9
Higgins CF. ABC transporters: from microorganisms to man. Annu Rev Cell Biol. 1992;8:67–113.
pubmed: 1282354
doi: 10.1146/annurev.cb.08.110192.000435
pmcid: 1282354
Ouellette M, Légaré D, Haimeur A, Grondin K, Roy G, Brochu C, et al. ABC transporters in Leishmania and their role in drug resistance. Drug Resist Updates. 1998;1:43–8.
doi: 10.1016/S1368-7646(98)80213-6
Moreira DS, Monte Neto RL, Andrade JM, Santi AMM, Reis PG, Frézard F, et al. Molecular characterization of the MRPA transporter and antimony uptake in four New World Leishmania spp. susceptible and resistant to antimony. Int J Parasitol Drugs Drug Resist. 2013;3:143–53.
pubmed: 24533304
pmcid: 3862441
doi: 10.1016/j.ijpddr.2013.08.001
Douanne N, Wagner V, Roy G, Leprohon P, Ouellette M, Fernandez-Prada C. MRPA-independent mechanisms of antimony resistance in Leishmania infantum. Int J Parasitol Drugs Drug Resist. 2020;13:28–37.
pubmed: 32413766
pmcid: 7225602
doi: 10.1016/j.ijpddr.2020.03.003
Singh S, Mandlik V. Structure based investigation on the binding interaction of transport proteins in leishmaniasis: insights from molecular simulation. Mol Biosyst. 2015;11:1251–9.
pubmed: 25761976
doi: 10.1039/C4MB00713A
pmcid: 25761976
Clayton C, Shapira M. Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Mol Biochem Parasitol. 2007;156:93–101.
pubmed: 17765983
doi: 10.1016/j.molbiopara.2007.07.007
pmcid: 17765983
Lunde BM, Moore C, Varani G. RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol. 2007;8:479–90.
pubmed: 17473849
pmcid: 5507177
doi: 10.1038/nrm2178
Kumar A, Sisodia B, Misra P, Sundar S, Shasany AK, Dube A. Proteome mapping of overexpressed membrane-enriched and cytosolic proteins in sodium antimony gluconate (SAG) resistant clinical isolate of Leishmania donovani: overexpressed proteins in SAG resistant L. donovani. Br J Clin Pharmacol. 2010;70:609–17.
pubmed: 20840452
pmcid: 2950996
doi: 10.1111/j.1365-2125.2010.03716.x
Das S, Shah P, Baharia RK, Tandon R, Khare P, Sundar S, et al. over-expression of 60s ribosomal L23a is associated with cellular proliferation in SAG resistant clinical isolates of Leishmania donovani. PLoS Negl Trop Dis. 2013;7:2527.
doi: 10.1371/journal.pntd.0002527
Schenkman JB, Jansson I. The many roles of cytochrome b5. Pharmacol Ther. 2003;97:139–52.
pubmed: 12559387
doi: 10.1016/S0163-7258(02)00327-3
pmcid: 12559387
Mukherjee S, Santara SS, Das S, Bose M, Roy J, Adak S. NAD(P)H cytochrome b5 oxidoreductase deficiency in Leishmania major results in impaired linoleate synthesis followed by Increased oxidative stress and cell death. J Biol Chem. 2012;287:34992–5003.
pubmed: 22923617
pmcid: 3471740
doi: 10.1074/jbc.M112.389338
Mukherjee A, Roy G, Guimond C, Ouellette M. The γ-glutamylcysteine synthetase gene of Leishmania is essential and involved in response to oxidants. Mol Microbiol. 2009;74:914–27.
pubmed: 19818018
doi: 10.1111/j.1365-2958.2009.06907.x
Guimond C, Trudel N, Brochu C, Marquis N, El Fadili A, Peytavi R, et al. Modulation of gene expression in Leishmania drug resistant mutants as determined by targeted DNA microarrays. Nucleic Acids Res. 2003;31:5886–96.
pubmed: 14530437
pmcid: 219483
doi: 10.1093/nar/gkg806
Mukherjee A, Padmanabhan PK, Singh S, Roy G, Girard I, Chatterjee M, et al. Role of ABC transporter MRPA, γ-glutamylcysteine synthetase and ornithine decarboxylase in natural antimony-resistant isolates of Leishmania donovani. J Antimicrob Chemother. 2007;59:204–11.
pubmed: 17213267
doi: 10.1093/jac/dkl494