Predictors of maternal-origin microchimerism in young women in the Philippines.
biological inheritance
developmental origins
immune tolerance
Journal
American journal of physical anthropology
ISSN: 1096-8644
Titre abrégé: Am J Phys Anthropol
Pays: United States
ID NLM: 0400654
Informations de publication
Date de publication:
02 2021
02 2021
Historique:
received:
15
06
2020
revised:
17
09
2020
accepted:
09
11
2020
pubmed:
11
12
2020
medline:
19
3
2021
entrez:
10
12
2020
Statut:
ppublish
Résumé
Microchimerism is the presence of a small quantity of cells or DNA from a genetically distinct individual. This phenomenon occurs with bidirectional maternal-fetal exchange during pregnancy. Microchimerism can persist for decades after delivery and have long-term health implications. However, little is known about why microchimerism is detectable at varying levels in different individuals. We examine the variability and the following potential determinants of maternal-origin microchimerism (MMc) in young women in the Philippines: gestational duration (in utero exposure to MMc), history of being breastfed (postpartum exposure to MMc), maternal telomere length (maternal cells' ability to replicate and persist), and participant's pregnancies in young adulthood (effect of adding fetal-origin microchimerism to preexisting MMc). Data are from the Cebu Longitudinal Health and Nutrition Survey, a population-based study of infant feeding practices and long-term health outcomes. We quantified MMc using quantitative PCR (qPCR) in 89 female participants, ages 20-22, and analyzed these data using negative binomial regression. In a multivariate model including all predictors, being breastfed substantially predicted decreased MMc (detection rate ratio = 0.15, p = 0.007), and there was a trend of decreasing MMc in participants who had experienced more pregnancies (detection rate ratio = 0.55, p = 0.057). These results might be explained by breastfeeding having lasting impact on immune regulatory networks, thus reducing MMc persistence. MMc may also decrease in response to the introduction of fetal-origin microchimerism with pregnancies experienced in adulthood.
Substances chimiques
DNA
9007-49-2
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
213-223Subventions
Organisme : NHLBI NIH HHS
ID : R01 HL117737
Pays : United States
Organisme : NIH HHS
ID : P2C HD042828
Pays : United States
Organisme : NIH HHS
ID : R01 HL117737
Pays : United States
Organisme : NIH HHS
ID : T32 HD007543
Pays : United States
Informations de copyright
© 2020 Wiley Periodicals LLC.
Références
Adair, L. S., Popkin, B. M., Akin, J. S., Guilkey, D. K., Gultiano, S., Borja, J., … Hindin, M. J. (2011). Cohort profile: The Cebu longitudinal health and nutrition survey. International Journal of Epidemiology, 40(3), 619-625. https://doi.org/10.1093/ije/dyq085
Adams Waldorf, K. M., Gammill, H. S., Lucas, J., Aydelotte, T. M., Leisenring, W. M., Lambert, N. C., & Nelson, J. L. (2010). Dynamic changes in fetal Microchimerism in maternal peripheral blood mononuclear cells, CD4+ and CD8+ cells in Normal pregnancy. Placenta, 31(7), 589-594. https://doi.org/10.1016/j.placenta.2010.04.013
Amato, K. R. (2016). Incorporating the gut microbiota into models of human and non-human primate ecology and evolution. American Journal of Physical Anthropology, 159, 196-215. https://doi.org/10.1002/ajpa.22908
Aoyama, K., Koyama, M., Matsuoka, K., Hashimoto, D., Ichinohe, T., Harada, M., … Teshima, T. (2009). Improved outcome of allogeneic bone marrow transplantation due to breastfeeding-induced tolerance to maternal antigens. Blood, 113(8), 1829-1833. https://doi.org/10.1182/blood-2008-05-155283
Berry, S. M., Hassan, S. S., Russell, E., Kukuruga, D., Land, S., & Kaplan, J. (2004). Association of Maternal Histocompatibility at class II HLA loci with maternal Microchimerism in the fetus. Pediatric Research, 56(1), 73-78. https://doi.org/10.1203/01.PDR.0000129656.10005.A6
Bianchi, D. W., Zickwolf, G. K., Weil, G. J., Sylvester, S., & DeMaria, M. A. (1996). Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proceedings of the National Academy of Sciences of the United States of America, 93(2), 705-708.
Boddy, A. M., Fortunato, A., Wilson Sayres, M., & Aktipis, A. (2015). Fetal microchimerism and maternal health: A review and evolutionary analysis of cooperation and conflict beyond the womb. BioEssays, 37(10), 1106-1118. https://doi.org/10.1002/bies.201500059
Breakey, A. A., Hinde, K., Valeggia, C. R., Sinofsky, A., & Ellison, P. T. (2015). Illness in breastfeeding infants relates to concentration of lactoferrin and secretory immunoglobulin A in mother's milk. Evolution, Medicine, and Public Health, 2015(1), 21-31. https://doi.org/10.1093/emph/eov002
Burlingham, W. J., Grailer, A. P., Heisey, D. M., Claas, F. H. J., Norman, D., Mohanakumar, T., … Bean, M. A. (1998). The effect of tolerance to noninherited maternal HLA antigens on the survival of renal transplants from sibling donors. New England Journal of Medicine, 339(23), 1657-1664. https://doi.org/10.1056/NEJM199812033392302
Campbell, D. A., Lorber, M. I., Sweeton, J. C., Turcotte, J. G., Niederhuber, J. E., & Beer, A. E. (1984). Breast feeding and maternal-donor renal allografts. Possibly the original donor-specific transfusion. Transplantation, 37(4), 340-344.
Cawthon, R. M. (2009). Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Research, 37(3), e21-e21. https://doi.org/10.1093/nar/gkn1027
Cebu Longitudinal Health and Nutrition Survey. (2014). Cebu longitudinal health and nutrition survey Dataverse. UNC Dataverse. Retrieved from. https://dataverse.unc.edu/dataverse/cebu
Chen, C.-P., Lee, M.-Y., Huang, J.-P., Aplin, J. D., Wu, Y.-H., Hu, C.-S., … Yang, Y.-C. (2008). Trafficking of multipotent mesenchymal stromal cells from maternal circulation through the placenta involves vascular endothelial growth factor Receptor-1 and Integrins. Stem Cells, 26(2), 550-561. https://doi.org/10.1634/stemcells.2007-0406
Dahly, D. L., & Adair, L. S. (2007). Quantifying the urban environment: A scale measure of urbanicity outperforms the urban-rural dichotomy. Social Science & Medicine (1982, 64(7), 1407-1419. https://doi.org/10.1016/j.socscimed.2006.11.019
de la Calle, M., Delgado, J. L., Verlohren, S., Escudero, A., Bartha, J. L., Campillos, J. M., … Perales, A. (2016). Gestational age-specific reference ranges for the sFlt-1/PlGF ratio in multiple pregnancies: Risk factors, prediction of preeclampsia. Pregnancy Hypertension: An International Journal of Women's Cardiovascular Health, 6(3), 165-166. https://doi.org/10.1016/j.preghy.2016.08.060
Desantis, A. S., Kuzawa, C. W., & Adam, E. K. (2015). Developmental origins of flatter cortisol rhythms: Socioeconomic status and adult cortisol activity. American Journal of Human Biology, 27(4), 458-467. https://doi.org/10.1002/ajhb.22668
Dutta, P., & Burlingham, W. J. (2010). Stem cell microchimerism and tolerance to non-inherited maternal antigens. Chimerism, 1(1), 2-10. https://doi.org/10.4161/chim.1.1.12667
Dutta, P., Molitor-Dart, M., Bobadilla, J. L., Roenneburg, D. A., Yan, Z., Torrealba, J. R., & Burlingham, W. J. (2009). Microchimerism is strongly correlated with tolerance to noninherited maternal antigens in mice. Blood, 114(17), 3578-3587. https://doi.org/10.1182/blood-2009-03-213561
Eisenberg, D. T. A., Hayes, M. G., & Kuzawa, C. W. (2012). Delayed paternal age of reproduction in humans is associated with longer telomeres across two generations of descendants. Proceedings of the National Academy of Sciences, 109(26), 10251-10256. https://doi.org/10.1073/pnas.1202092109
Eisenberg, D. T. A., Kuzawa, C. W., & Hayes, M. G. (2015). Improving qPCR telomere length assays: Controlling for well position effects increases statistical power. American Journal of Human Biology, 27(4), 570-575. https://doi.org/10.1002/ajhb.22690
Gadalla, S. M., Aubert, G., Wang, T., Haagenson, M., Spellman, S. R., Wang, L., … Lee, S. J. (2018a). Donor telomere length and causes of death after unrelated hematopoietic cell transplantation in patients with marrow failure. Blood, 131(21), 2393-2398. https://doi.org/10.1182/blood-2017-10-812735
Gadalla, S. M., Wang, T., Haagenson, M., Spellman, S. R., Lee, S. J., Williams, K. M., … Savage, S. A. (2015). Association between donor leukocyte telomere length and survival after unrelated allogeneic hematopoietic cell transplantation for severe aplastic anemia. Jama, 313(6), 594-602. https://doi.org/10.1001/jama.2015.7
Gadalla, S. M., Wang, T., Loftus, D., Friedman, L., Dagnall, C., Haagenson, M., … Savage, S. A. (2018b). No association between donor telomere length and outcomes after allogeneic unrelated hematopoietic cell transplant in patients with acute leukemia. Bone Marrow Transplantation, 53(4), 383-391. https://doi.org/10.1038/s41409-017-0029-9
Gammill, H. S., & Harrington, W. E. (2017). Microchimerism: Defining and redefining the prepregnancy context - A review. Placenta, 60, 130-133. https://doi.org/10.1016/j.placenta.2017.08.071
Gammill, H. S., Guthrie, K. A., Aydelotte, T. M., Waldorf, K. M. A., & Nelson, J. L. (2010). Effect of parity on fetal and maternal microchimerism: Interaction of grafts within a host? Blood, 116(15), 2706-2712. https://doi.org/10.1182/blood-2010-02-270942
Gammill, H. S., Stephenson, M. D., Aydelotte, T. M., & Nelson, J. L. (2014). Microchimerism in recurrent miscarriage. Cellular & Molecular Immunology, 11(6), 589-594. https://doi.org/10.1038/cmi.2014.82
Gammill, H. S., Waldorf, K. M. A., Aydelotte, T. M., Lucas, J., Leisenring, W. M., Lambert, N. C., & Nelson, J. L. (2011). Pregnancy, Microchimerism, and the maternal grandmother. PLoS One, 6(8), e24101. https://doi.org/10.1371/journal.pone.0024101
Guthrie, K. A., Gammill, H. S., Kamper-Jørgensen, M., Tjønneland, A., Gadi, V. K., Nelson, J. L., & Leisenring, W. (2016). Statistical methods for unusual count data: Examples from studies of Microchimerism. American Journal of Epidemiology, 184(10), 779-786. https://doi.org/10.1093/aje/kww093
Haig, D. (2014). Does microchimerism mediate kin conflicts? Chimerism, 5(2), 53-55. https://doi.org/10.4161/chim.29122
Harrington, W. E., Kanaan, S. B., Muehlenbachs, A., Morrison, R., Stevenson, P., Fried, M., … Nelson, J. L. (2017). Maternal Microchimerism predicts increased infection but decreased disease due to Plasmodium falciparum during early childhood. The Journal of Infectious Diseases, 215(9), 1445-1451. https://doi.org/10.1093/infdis/jix129
Hassiotou, F., Beltran, A., Chetwynd, E., Stuebe, A. M., Twigger, A.-J., Metzger, P., … Hartmann, P. E. (2012). Breastmilk is a novel source of stem cells with multilineage differentiation potential. Stem Cells, 30(10), 2164-2174. https://doi.org/10.1002/stem.1188
Jonsson, A. M., Papadogiannakis, N., Granath, A., Haggstrom, J., Schaffer, M., Uzunel, M., & Westgren, M. (2010). Maternal Microchimerism in juvenile tonsils and adenoids. Pediatric Research, 68(3), 199-204. https://doi.org/10.1203/PDR.0b013e3181eb2eb4
Jonsson, A. M., Uzunel, M., Götherström, C., Papadogiannakis, N., & Westgren, M. (2008). Maternal microchimerism in human fetal tissues. American Journal of Obstetrics and Gynecology, 198(3), 325.e1-325.e6. https://doi.org/10.1016/j.ajog.2007.09.047
Kanaan, S. B., Gammill, H. S., Harrington, W. E., Rosa, S. C. D., Stevenson, P. A., Forsyth, A. M., … Nelson, J. L. (2017). Maternal microchimerism is prevalent in cord blood in memory T cells and other cell subsets, and persists post-transplant. OncoImmunology, 6(5), e1311436. https://doi.org/10.1080/2162402X.2017.1311436
Kanaan, S. B., Sensoy, O., Yan, Z., Gadi, V. K., Richardson, M. L., & Nelson, J. L. (2019). Immunogenicity of a rheumatoid arthritis protective sequence when acquired through microchimerism. Proceedings of the National Academy of Sciences, 116(39), 19600-19608. https://doi.org/10.1073/pnas.1904779116
Kanold, A. M. J., Svenungsson, E., Gunnarsson, I., Götherström, C., Padyukov, L., Papadogiannakis, N., … Westgren, M. (2013). A research study of the association between maternal Microchimerism and systemic lupus erythematosus in adults: A comparison between patients and healthy controls based on single-nucleotide polymorphism using quantitative real-time PCR. PLoS One, 8(9), e74534. https://doi.org/10.1371/journal.pone.0074534
Kois, W. E., Campbell, D. A., Jr., Lorber, M. I., Sweeton, J. C., & Dafoe, D. C. (1984). Influence of breast feeding on subsequent reactivity to a related renal allograft. Journal of Surgical Research, 37(2), 89-93. https://doi.org/10.1016/0022-4804(84)90166-5
Lambert, N. C., Erickson, T. D., Yan, Z., Pang, J. M., Guthrie, K. A., Furst, D. E., & Nelson, J. L. (2004). Quantification of maternal microchimerism by HLA-specific real-time polymerase chain reaction: Studies of healthy women and women with scleroderma. Arthritis and Rheumatism, 50(3), 906-914. https://doi.org/10.1002/art.20200
Loubière, L. S., Lambert, N. C., Flinn, L. J., Erickson, T. D., Yan, Z., Guthrie, K. A., … Nelson, J. L. (2006). Maternal microchimerism in healthy adults in lymphocytes, monocyte/macrophages and NK cells. Laboratory Investigation, 86(11), 1185-1192. https://doi.org/10.1038/labinvest.3700471
Maloney, S., Smith, A., Furst, D. E., Myerson, D., Rupert, K., Evans, P. C., & Nelson, J. L. (1999). Microchimerism of maternal origin persists into adult life. Journal of Clinical Investigation, 104(1), 41-47.
McDade, T. W., Hoke, M., Borja, J. B., Adair, L. S., & Kuzawa, C. (2013). Do environments in infancy moderate the association between stress and inflammation in adulthood? Initial evidence from a birth cohort in The Philippines. Brain, Behavior, and Immunity, 31, 23-30. https://doi.org/10.1016/j.bbi.2012.08.010
Nelson, J. L. (2012). The otherness of self: Microchimerism in health and disease. Trends in Immunology, 33(8), 421-427. https://doi.org/10.1016/j.it.2012.03.002
Nelson, J. L., Gillespie, K. M., Lambert, N. C., Stevens, A. M., Loubiere, L. S., Rutledge, J. C., … Gale, E. A. M. (2007). Maternal microchimerism in peripheral blood in type 1 diabetes and pancreatic islet β cell microchimerism. Proceedings of the National Academy of Sciences, 104(5), 1637-1642. https://doi.org/10.1073/pnas.0606169104
Patki, S., Kadam, S., Chandra, V., & Bhonde, R. (2010). Human breast milk is a rich source of multipotent mesenchymal stem cells. Human Cell, 23(2), 35-40. https://doi.org/10.1111/j.1749-0774.2010.00083.x
Petit, T., Dommergues, M., Socié, G., Dumez, Y., Gluckman, E., & Brison, O. (1997). Detection of maternal cells in human fetal blood during the third trimester of pregnancy using allele-specific PCR amplification. British Journal of Haematology, 98(3), 767-771. https://doi.org/10.1046/j.1365-2141.1997.2603076.x
Popkin, B. M., Adair, L., Akin, J. S., Black, R., Briscoe, J., & Flieger, W. (1990). Breast-feeding and diarrheal morbidity. Pediatrics, 86(6), 874-882.
Shree, R., Harrington, W. E., Kanaan, S. B., Forsyth, A., Cousin, E., Lopez, A., … Gammill, H. S. (2019). Fetal microchimerism by mode of delivery: A prospective cohort study. BJOG: An International Journal of Obstetrics & Gynaecology, 126(1), 24-31. https://doi.org/10.1111/1471-0528.15432
Srivatsa, B., Srivatsa, S., Johnson, K. L., & Bianchi, D. W. (2003). Maternal cell microchimerism in newborn tissues. The Journal of Pediatrics, 142(1), 31-35. https://doi.org/10.1067/mpd.2003.mpd0327
Stevens, A. M. (2016). Maternal microchimerism in health and disease. Best Practice & Research Clinical Obstetrics & Gynaecology, 31, 121-130. https://doi.org/10.1016/j.bpobgyn.2015.08.005
Stevens, A. M., Hermes, H. M., Kiefer, M. M., Rutledge, J. C., & Nelson, J. L. (2009). Chimeric maternal cells with tissue-specific antigen expression and morphology are common in infant tissues. Pediatric and Developmental Pathology: The Official Journal of the Society for Pediatric Pathology and the Paediatric Pathology Society, 12(5), 337-346. https://doi.org/10.2350/08-07-0499.1
Stevens, A. M., Hermes, H. M., Rutledge, J. C., Buyon, J. P., & Nelson, J. L. (2003). Myocardial-tissue-specific phenotype of maternal microchimerism in neonatal lupus congenital heart block. The Lancet, 362(9396), 1617-1623. https://doi.org/10.1016/S0140-6736(03)14795-2
Sunku, C. C., Gadi, V., de Lacoste, B. d. L., Guthrie, K. A., & Nelson, J. L. (2010). Maternal and fetal microchimerism in granulocytes. Chimerism, 1(1), 11-14. https://doi.org/10.4161/chim.1.1.13098
Suskind, D. L., Kong, D., Stevens, A. M., Wahbeh, G., Christie, D., Baxter-Lowe, L.-A., & Muench, M. O. (2011). Maternal microchimerism in pediatric inflammatory bowel disease. Chimerism, 2(2), 50-54. https://doi.org/10.4161/chim.2.2.16556
Tennyson, R. L., Gettler, L. T., Kuzawa, C. W., Hayes, M. G., Agustin, S. S., & Eisenberg, D. T. A. (2018). Lifetime socioeconomic status and early life microbial environments predict adult blood telomere length in The Philippines. American Journal of Human Biology, 30(5), e23145. https://doi.org/10.1002/ajhb.23145
Thayer, Z. M., & Non, A. L. (2015). Anthropology meets epigenetics: Current and future directions. American Anthropologist, 117(4), 722-735. https://doi.org/10.1111/aman.12351
Thompson, E. E., Myers, R. A., Du, G., Aydelotte, T. M., Tisler, C. J., Stern, D. A., … Ober, C. (2013). Maternal microchimerism protects against the development of asthma. Journal of Allergy and Clinical Immunology, 132(1), 39-44.e4. https://doi.org/10.1016/j.jaci.2012.12.1575
VanDerslice, J., Popkin, B., & Briscoe, J. (1994). Drinking-water quality, sanitation, and breast-feeding: Their interactive effects on infant health. Bulletin of the World Health Organization, 72(4), 589-601.
Zhou, L., Yoshimura, Y., Huang, Y.-Y., Suzuki, R., Yokoyama, M., Okabe, M., & Shimamura, M. (2000). Two independent pathways of maternal cell transmission to offspring: Through placenta during pregnancy and by breast-feeding after birth. Immunology, 101(4), 570-581. https://doi.org/10.1046/j.1365-2567.2000.00144.x