Bone marrow transplantation into Abcd1-deficient mice: Distribution of donor derived-cells and biological characterization of the brain of the recipient mice.
ATP Binding Cassette Transporter, Subfamily D, Member 1
/ deficiency
Adrenoleukodystrophy
/ metabolism
Animals
Bone Marrow Transplantation
Brain
/ metabolism
Calcium-Binding Proteins
/ metabolism
Cells, Cultured
Glial Fibrillary Acidic Protein
/ metabolism
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Microfilament Proteins
/ metabolism
Oligodendrocyte Transcription Factor 2
/ metabolism
ABCD1
X-linked adrenoleukodystrophy
bone marrow transplantation
green fluorescence protein
peroxisome
very long chain fatty acid
Journal
Journal of inherited metabolic disease
ISSN: 1573-2665
Titre abrégé: J Inherit Metab Dis
Pays: United States
ID NLM: 7910918
Informations de publication
Date de publication:
05 2021
05 2021
Historique:
revised:
13
12
2020
received:
29
08
2020
accepted:
15
12
2020
pubmed:
18
12
2020
medline:
28
12
2021
entrez:
17
12
2020
Statut:
ppublish
Résumé
X-linked adrenoleukodystrophy (X-ALD) is a severe inherited metabolic disease with cerebral inflammatory demyelination and abnormal accumulation of very long chain fatty acid (VLCFA) in tissues, especially the brain. At present, bone marrow transplantation (BMT) at an early stage of the disease is the only effective treatment for halting disease progression, but the underlying mechanism of the treatment has remained unclear. Here, we transplanted GFP-expressing wild-type (WT) or Abcd1-deficient (KO) bone marrow cells into recipient KO mice, which enabled tracking of the donor GFP
Substances chimiques
ATP Binding Cassette Transporter, Subfamily D, Member 1
0
Abcd1 protein, mouse
0
Aif1 protein, mouse
0
Calcium-Binding Proteins
0
Glial Fibrillary Acidic Protein
0
Microfilament Proteins
0
Olig2 protein, mouse
0
Oligodendrocyte Transcription Factor 2
0
glial fibrillary astrocytic protein, mouse
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
718-727Informations de copyright
© 2020 SSIEM.
Références
Kemp S, Huffnagel I, Linthorst G, Wanders R, Engelen M. Adrenoleukodystrophy-neuroendocrine pathogenesis and redefinition of natural history. Nat Rev Endocrinol. 2016;12(10):606-615. https://doi.org/10.1038/nrendo.2016.90.
Huffnagel IC, van Ballegoij WJC, van Geel BM, JMBW V, Kemp S, Engelen M. Progression of myelopathy in males with adrenoleukodystrophy: towards clinical trial readiness. Brain. 2019;142(2):334-343. https://doi.org/10.1093/brain/awy299.
Schaumburg HH, Powers JM, Suzuki K, Raine CS. Adreno-leukodystrophy (sex-linked Schilder disease). Ultrastructural demonstration of specific cytoplasmic inclusions in the central nervous system. Arch Neurol. 1974;31(3):210-213. https://doi.org/10.1001/archneur.1974.00490390092013.
Powers JM, Schaumburg HH. Adreno-leukodystrophy (sex-linked Schilder's disease). A pathogenetic hypothesis based on ultrastructural lesions in adrenal cortex, peripheral nerve and testis. Am J Pathol. 1974;76(3):481-491.
Igarashi M, Schaumburg HH, Powers J, Kishmoto Y, Kolodny E, Suzuki K. Fatty acid abnormality in adrenoleukodystrophy. J Neurochem. 1976;26(4):851-860. https://doi.org/10.1111/j.1471-4159.1976.tb04462.x.
Richmond P, van der Kloet F, Vaz FM, et al. Multi-Omic approach to identify phenotypic modifiers underlying cerebral demyelination in X-linked adrenoleukodystrophy. Front Cell Dev Biol. 2020;8:520. https://doi.org/10.3389/fcell.2020.00520.
Aubourg P, Blanche S, Jambaqué I, et al. Reversal of early neurologic and neuroradiologic manifestations of X-linked adrenoleukodystrophy by bone marrow transplantation. N Engl J Med. 1990;322(26):1860-1866. https://doi.org/10.1056/NEJM199006283222607.
Cartier N, Aubourg P. Hematopoietic stem cell transplantation and hematopoietic stem cell gene therapy in X-linked adrenoleukodystrophy. Brain Pathol. 2010;20(4):857-862. https://doi.org/10.1111/j.1750-3639.2010.00394.x.
Cartier N, Hacein-Bey-Abina S, Bartholomae CC, et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science. 2009;326(5954):818-823. https://doi.org/10.1126/science.1171242.
Kuhl JS, Suarez F, Gillett GT, et al. Long-term outcomes of allogeneic haematopoietic stem cell transplantation for adult cerebral X-linked adrenoleukodystrophy. Brain. 2017;140(4):953-966.
Eichler F, Duncan C, Musolino PL, et al. Hematopoietic stem-cell gene therapy for cerebral adrenoleukodystrophy. N Engl J Med. 2017;377(17):1630-1638.
Hayakawa J, Migita M, Ueda T, Shimada T, Fukunaga Y. Generation of a chimeric mouse reconstituted with green fluorescent protein-positive bone marrow cells: a useful model for studying the behavior of bone marrow cells in regeneration in vivo. Int J Hematol. 2003;77(5):456-462. https://doi.org/10.1007/BF02986613.
Kobayashi T, Shinnoh N, Kondo A, Yamada T. Adrenoleukodystrophy protein-deficient mice represent abnormality of very long chain fatty acid metabolism. Biochem Biophys Res Commun. 1997;232(3):631-636. https://doi.org/10.1006/bbrc.1997.6340.
Morita M, Kawamichi M, Shimura Y, Kawaguchi K, Watanabe S, Imanaka T. Brain microsomal fatty acid elongation is increased in abcd1-deficient mouse during active myelination phase. Metab Brain Dis. 2015;30(6):1359-1367. https://doi.org/10.1007/s11011-015-9701-1.
Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(8):911-917. https://doi.org/10.1139/o59-099.
van Geel B, Poll The B, Verrips A, Boelens J-J, Kemp S, Engelen M. Hematopoietic cell transplantation does not prevent myelopathy in X-linked adrenoleukodystrophy: a retrospective study. J Inherit Metab Dis. 2015;38(2):359-361.
Rockenbach F, Deon M, Marchese D, et al. The effect of bone marrow transplantation on oxidative stress in X-linked adrenoleukodystrophy. Mol Genet Metab. 2015;106(2):231-236.
Jiang H, Jiang M-Y, Liu S, Cai Y-N, Liang C-L, Liu L. Combination of a haploidentical stem cell transplant with umbilical cord blood for cerebral X-linked adrenoleukodystrophy. Pediat Neurol. 2015;53(2):163-165.e161.
Benhamida S, Pflumio F, Dubart Kupperschmitt A, et al. Transduced CD34+ cells from adrenoleukodystrophy patients with HIV-derived vector mediate long-term engraftment of NOD/SCID mice. Mol Ther. 2003;7(3):317-324.
Rodriguez M, Alvarez-Erviti L, Blesa FJ, et al. Bone-marrow-derived cell differentiation into microglia: a study in a progressive mouse model of Parkinson's disease. Neurobiol Dis. 2007;28(3):316-325. https://doi.org/10.1016/j.nbd.2007.07.024.
Yagi T, McMahon EJ, Takikita S, Mohri I, Matsushima GK, Suzuki K. Fate of donor hematopoietic cells in demyelinating mutant mouse, twitcher, following transplantation of GFP+ bone marrow cells. Neurobiol Dis. 2004;16(1):98-109. https://doi.org/10.1016/j.nbd.2004.01.002.
Simard AR, Rivest S. Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. FASEB J. 2004;18(9):998-1000. https://doi.org/10.1096/fj.04-1517fje.
Kennedy DW, Abkowitz JL. Kinetics of central nervous system microglial and macrophage engraftment: analysis using a transgenic bone marrow transplantation model. Blood. 1997;90(3):986-993.
Migeon BR, Moser HW, Moser AB, Axelman J, Sillence D, Norum RA. Adrenoleukodystrophy: evidence for X linkage, inactivation, and selection favoring the mutant allele in heterozygous cells. Proc Natl Acad Sci U S A. 1981;78(8):5066-5070. https://doi.org/10.1073/pnas.78.8.5066.
Powers JM, Schaumburg HH, Johnson AB, Raine CS. A correlative study of the adrenal cortex in adreno-leukodystrophy-Evidence for a fatal intoxication with very long chain saturated fatty acids. Invest Cell Pathol. 1980;3(4):353-376.
Eichler FS, Ren JQ, Cossoy M, et al. Is microglial apoptosis an early pathogenic change in cerebral X-linked adrenoleukodystrophy? Ann Neurol. 2008;63(6):729-742. https://doi.org/10.1002/ana.21391.
Hein S, Schonfeld P, Kahlert S, Reiser G. Toxic effects of X-linked adrenoleukodystrophy-associated, very long chain fatty acids on glial cells and neurons from rat hippocampus in culture. Hum Mol Genet. 2008;17(12):1750-1761. https://doi.org/10.1093/hmg/ddn066.
Verheijden S, Beckers L, Casazza A, Butovsky O, Mazzone M, Baes M. Identification of a chronic non-neurodegenerative microglia activation state in a mouse model of peroxisomal β-oxidation deficiency. Glia. 2015;63(9):1606-1620. https://doi.org/10.1002/glia.22831.
Baarine M, Beeson C, Singh A. Singh I. ABCD1 deletion-induced mitochondrial dysfunction is corrected by SAHA: implication for adrenoleukodystrophy. J Neurochem. 2015;133(11):380-396. https://doi.org/10.1371/journal.pone.0143238.
Singh J, Khan M, Singh I. Silencing of Abcd1 and Abcd2 genes sensitizes astrocytes for inflammation: implication for X-adrenoleukodystrophy. J Lipid Res. 2019;50(1):135-147. https://doi.org/10.1194/jlr.M800321-JLR200.
Raas Q, Gondcaille C, Hamon Y, et al. CRISPR/Cas9-mediated knockout of Abcd1 and Abcd2 genes in BV-2 cells: novel microglial models for X-linked Adrenoleukodystrophy. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864:704-714. https://doi.org/10.1016/j.bbalip.2019.02.006.
Musolino P, Gong Y, Snyder JMT, et al. Brain endothelial dysfunction in cerebral adrenoleukodystrophy. Brain. 2015;138(11):3206-3220.
Aubourg P. Cerebral adrenoleukodystrophy: a demyelinating disease that leaves the door wide open. Brain. 2015;138(Pt11):3133-3136. https://doi.org/10.1093/brain/awv271.
Orchard PJ, Nascene DR, Miller WP, Gupta A, Kenney-Jung D, Lund TC. Successful donor engraftment and repair of the blood brain barrier in cerebral adrenoleukodystrophy. Blood. 2019;133:1378-1381. https://doi.org/10.1182/blood-2018-11-887240.
Derecki NC, Cronk JC, Kipnis J. The role of microglia in brain maintenance: implications for Rett syndrome. Trends Immunol. 2013;34(3):144-150. https://doi.org/10.1016/j.it.2012.10.002.
Larochelle A, Bellavance MA, Michaud JP, Rivest S. Bone marrow-derived macrophages and the CNS: an update on the use of experimental chimeric mouse models and bone marrow transplantation in neurological disorders. Biochim Biophys Acta. 2016;1862(3):310-322.
Pujol A, Ferrer I, Camps C, et al. Functional overlap between ABCD1 (ALD) and ABCD2 (ALDR) transporters: a therapeutic target for X-adrenoleukodystrophy. Hum Mol Genet. 2004;13(23):2997-3006. https://doi.org/10.1093/hmg/ddh323.