Gene- and pathway-level analyses of iCOGS variants highlight novel signaling pathways underlying familial breast cancer susceptibility.
BRCA1 Protein
/ genetics
BRCA2 Protein
/ genetics
Breast Neoplasms
/ diagnosis
Case-Control Studies
Female
Gene Regulatory Networks
/ genetics
Genetic Predisposition to Disease
/ genetics
Genetic Testing
/ methods
Genome-Wide Association Study
/ methods
Humans
Mutation
Polymorphism, Single Nucleotide
Protein Interaction Maps
/ genetics
ROC Curve
Siblings
Signal Transduction
/ genetics
association study
familial breast cancer
single-nucleotide polymorphism
systems biology
Journal
International journal of cancer
ISSN: 1097-0215
Titre abrégé: Int J Cancer
Pays: United States
ID NLM: 0042124
Informations de publication
Date de publication:
15 04 2021
15 04 2021
Historique:
received:
17
09
2020
revised:
20
11
2020
accepted:
07
12
2020
pubmed:
29
12
2020
medline:
3
8
2021
entrez:
28
12
2020
Statut:
ppublish
Résumé
Single-nucleotide polymorphisms (SNPs) in over 180 loci have been associated with breast cancer (BC) through genome-wide association studies involving mostly unselected population-based case-control series. Some of them modify BC risk of women carrying a BRCA1 or BRCA2 (BRCA1/2) mutation and may also explain BC risk variability in BC-prone families with no BRCA1/2 mutation. Here, we assessed the contribution of SNPs of the iCOGS array in GENESIS consisting of BC cases with no BRCA1/2 mutation and a sister with BC, and population controls. Genotyping data were available for 1281 index cases, 731 sisters with BC, 457 unaffected sisters and 1272 controls. In addition to the standard SNP-level analysis using index cases and controls, we performed pedigree-based association tests to capture transmission information in the sibships. We also performed gene- and pathway-level analyses to maximize the power to detect associations with lower-frequency SNPs or those with modest effect sizes. While SNP-level analyses identified 18 loci, gene-level analyses identified 112 genes. Furthermore, 31 Kyoto Encyclopedia of Genes and Genomes and 7 Atlas of Cancer Signaling Network pathways were highlighted (false discovery rate of 5%). Using results from the "index case-control" analysis, we built pathway-derived polygenic risk scores (PRS) and assessed their performance in the population-based CECILE study and in a data set composed of GENESIS-affected sisters and CECILE controls. Although these PRS had poor predictive value in the general population, they performed better than a PRS built using our SNP-level findings, and we found that the joint effect of family history and PRS needs to be considered in risk prediction models.
Identifiants
pubmed: 33368296
doi: 10.1002/ijc.33457
pmc: PMC9290690
doi:
Substances chimiques
BRCA1 Protein
0
BRCA1 protein, human
0
BRCA2 Protein
0
BRCA2 protein, human
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1895-1909Informations de copyright
© 2020 The Authors. International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.
Références
Int J Cancer. 2021 Apr 15;148(8):1895-1909
pubmed: 33368296
Nat Genet. 2017 Dec;49(12):1767-1778
pubmed: 29058716
Nat Genet. 2013 Apr;45(4):353-61, 361e1-2
pubmed: 23535729
Nat Genet. 2006 Aug;38(8):873-5
pubmed: 16832357
Nature. 2005 Apr 14;434(7035):917-21
pubmed: 15829967
Nat Genet. 2013 Apr;45(4):385-91, 391e1-2
pubmed: 23535732
J Invest Dermatol. 2016 Mar;136(3):593-602
pubmed: 26743605
Int J Cancer. 2013 Feb 15;132(4):924-31
pubmed: 22689255
BMC Cancer. 2016 Jan 12;16:13
pubmed: 26758370
Int J Cancer. 2019 Apr 15;144(8):1962-1974
pubmed: 30303537
Nat Rev Genet. 2010 Dec;11(12):843-54
pubmed: 21085203
Breast Cancer Res. 2013 Feb 28;15(1):R17
pubmed: 23448497
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W90-5
pubmed: 20435672
Nucleic Acids Res. 2018 Jan 4;46(D1):D971-D976
pubmed: 29036324
Eur J Hum Genet. 2011 Jul;19(7):807-12
pubmed: 21407268
Am J Hum Genet. 2019 Jan 3;104(1):21-34
pubmed: 30554720
Twin Res Hum Genet. 2015 Feb;18(1):86-91
pubmed: 25518859
N Engl J Med. 2014 Aug 7;371(6):497-506
pubmed: 25099575
Nat Genet. 2013 Apr;45(4):343
pubmed: 23535721
Am J Hum Genet. 2009 Oct;85(4):427-46
pubmed: 19781682
Oncogene. 2006 Sep 25;25(43):5825-31
pubmed: 16998496
Am J Hum Genet. 2010 Jul 9;87(1):139-45
pubmed: 20598278
Nature. 2007 Jun 28;447(7148):1087-93
pubmed: 17529967
PLoS Genet. 2011 Jan 13;7(1):e1001273
pubmed: 21249183
Behav Brain Res. 2001 Nov 1;125(1-2):279-84
pubmed: 11682119
Breast Cancer Res. 2011 Jan 18;13(1):R6
pubmed: 21244692
Nat Genet. 2007 Jul;39(7):870-4
pubmed: 17529973
Nucleic Acids Res. 2017 Jan 4;45(D1):D353-D361
pubmed: 27899662
Nat Genet. 2007 Jul;39(7):865-9
pubmed: 17529974
Nat Rev Genet. 2011 Jun 01;12(7):465-74
pubmed: 21629274
Nat Genet. 2007 Feb;39(2):165-7
pubmed: 17200668
BMC Res Notes. 2011 Oct 07;4:386
pubmed: 21981765
Am J Hum Genet. 2007 Sep;81(3):559-75
pubmed: 17701901
Endocr Relat Cancer. 2014 Aug;21(4):629-38
pubmed: 24919398
Trends Genet. 2012 Jul;28(7):323-32
pubmed: 22480918
Nucleic Acids Res. 2000 Jan 1;28(1):27-30
pubmed: 10592173
Nature. 2009 Oct 8;461(7265):747-53
pubmed: 19812666
Am J Hum Genet. 2010 Jun 11;86(6):929-42
pubmed: 20560208
Am J Hum Genet. 2003 May;72(5):1117-30
pubmed: 12677558
Oncogenesis. 2015 Jul 20;4:e160
pubmed: 26192618