A decrease in plasma glucose levels is required for increased endogenous glucose production with a single administration of a sodium-glucose co-transporter-2 inhibitor tofogliflozin.
SGLT2 inhibitor
endogenous glucose production
glucagon
Journal
Diabetes, obesity & metabolism
ISSN: 1463-1326
Titre abrégé: Diabetes Obes Metab
Pays: England
ID NLM: 100883645
Informations de publication
Date de publication:
05 2021
05 2021
Historique:
revised:
09
12
2020
received:
30
08
2020
accepted:
21
12
2020
pubmed:
31
12
2020
medline:
10
7
2021
entrez:
30
12
2020
Statut:
ppublish
Résumé
To investigate whether changes in endogenous glucose production (EGP) and insulin and glucagon levels are elicited by the decrease in plasma glucose (PG) levels induced by the sodium-glucose co-transporter-2 (SGLT2) inhibitor tofogliflozin. We evaluated EGP in 12 Japanese patients with type 2 diabetes under the conditions of no drugs administered (CON), single administration of the SGLT2 inhibitor tofogliflozin (TOF), and single administration of TOF with adjustment of PG levels with exogenous glucose infusion to mimic changes in PG levels observed with CON (TOF + G). We evaluated changes in EGP and levels of C-peptide and glucagon from baseline to 180 minutes after drug administration. Endogenous glucose production decreased in the CON (-0.22 ± 0.11 mg/kg·min) and TOF + G experiments (-0.31 ± 0.24 mg/kg·min), but not in the TOF experiment (+0.08 ± 0.19 mg/kg·min). The decrease in C-peptide was significantly greater in the TOF experiment (-0.11 ± 0.06 nmol/L) than in the CON (-0.03 ± 0.06 nmol/L) and the TOF + G experiments (-0.01 ± 0.11 nmol/L), while the increase in glucagon was significantly greater in the TOF experiment (+11.1 ± 6.3 pmol/L), but not in the TOF + G experiment (+8.6 ± 7.6 pmol/L) compared to the CON experiment (+5.1 ± 4.3 pmol/L). These results indicate that the decrease in PG levels induced by SGLT2 inhibitor administration is required for the increase in EGP and decrease in insulin secretion.
Substances chimiques
Benzhydryl Compounds
0
Blood Glucose
0
Glucosides
0
Insulin
0
Pharmaceutical Preparations
0
Sodium-Glucose Transporter 2
0
Sodium-Glucose Transporter 2 Inhibitors
0
Sodium
9NEZ333N27
Glucose
IY9XDZ35W2
6-((4-ethylphenyl)methyl)-3',4',5',6'-tetrahydro-6'-(hydroxymethyl)spiro(isobenzofuran-1(3H),2'-(2H)pyran)-3',4',5'-triol
P8DD8KX4O4
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1092-1100Subventions
Organisme : Kowa Co., Ltd.
Informations de copyright
© 2020 John Wiley & Sons Ltd.
Références
Abdul-Ghani MA, Norton L, DeFronzo RA. Renal sodium-glucose cotransporter inhibition in the management of type 2 diabetes mellitus. Am J Physiol Renal Physiol. 2015;309(11):F889-F900.
Mudaliar S, Polidori D, Zambrowicz B, Henry RR. Sodium-glucose cotransporter inhibitors: effects on renal and intestinal glucose transport: from bench to bedside. Diabetes Care. 2015;38(12):2344-2353.
Vasilakou D, Karagiannis T, Athanasiadou E, et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2013;159(4):262-274.
Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117-2128.
Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644-657.
Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347-357.
Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375(4):323-334.
Ferrannini E, Muscelli E, Frascerra S, et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest. 2014;124(2):499-508.
Merovci A, Solis-Herrera C, Daniele G, et al. Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. J Clin Invest. 2014;124(2):509-514.
Alatrach M, Laichuthai N, Martinez R, et al. Evidence against an important role of plasma insulin and glucagon concentrations in the increase in EGP caused by SGLT2 inhibitors. Diabetes. 2020;69(4):681-688.
Cherrington AD, Edgerton D, Sindelar DK. The direct and indirect effects of insulin on hepatic glucose production in vivo. Diabetologia. 1998;41(9):987-996.
Kelley DE, McKolanis TM, Hegazi RA, Kuller LH, Kalhan SC. Fatty liver in type 2 diabetes mellitus: relation to regional adiposity, fatty acids, and insulin resistance. Am J Physiol Endocrinol Metab. 2003;285(4):E906-E916.
Takeno K, Tamura Y, Kawaguchi M, et al. Relation between insulin sensitivity and metabolic abnormalities in Japanese men with BMI of 23-25 kg/m(2). J Clin Endocrinol Metab. 2016;101(10):3676-3684.
Steele R, Wall JS, De Bodo RC, Altszuler N. Measurement of size and turnover rate of body glucose pool by the isotope dilution method. Am J Physiol. 1956;187(1):15-24.
Vella A, Reed AS, Charkoudian N, et al. Glucose-induced suppression of endogenous glucose production: dynamic response to differing glucose profiles. Am J Physiol Endocrinol Metab. 2003;285(1):E25-E30.
Nielsen MF, Basu R, Wise S, Caumo A, Cobelli C, Rizza RA. Normal glucose-induced suppression of glucose production but impaired stimulation of glucose disposal in type 2 diabetes: evidence for a concentration-dependent defect in uptake. Diabetes. 1998;47(11):1735-1747.
Lundkvist P, Pereira MJ, Kamble PG, et al. Glucagon levels during short-term SGLT2 inhibition are largely regulated by glucose changes in patients with type 2 diabetes. J Clin Endocrinol Metab. 2019;104(1):193-201.
Kuhre RE, Ghiasi SM, Adriaenssens AE, et al. No direct effect of SGLT2 activity on glucagon secretion. Diabetologia. 2019;62(6):1011-1023.
Bonner C, Kerr-Conte J, Gmyr V, et al. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat Med. 2015;21(5):512-517.
Pedersen MG, Ahlstedt I, El Hachmane MF, Gopel SO. Dapagliflozin stimulates glucagon secretion at high glucose: experiments and mathematical simulations of human A-cells. Sci Rep. 2016;6:31214.
Solini A, Sebastiani G, Nigi L, Santini E, Rossi C, Dotta F. Dapagliflozin modulates glucagon secretion in an SGLT2-independent manner in murine alpha cells. Diabetes Metab. 2017;43(6):512-520.
Steiner KE, Williams PE, Lacy WW, Cherrington AD. Effects of insulin on glucagon-stimulated glucose production in the conscious dog. Metabolism. 1990;39(12):1325-1333.
Cherrington AD, Stevenson RW, Steiner KE, Connolly CC, Wada M, Goldstein RE. Acute hormonal regulation of gluconeogenesis in the conscious dog. Adv Exp Med Biol. 1993;334:199-208.
Solis-Herrera C, Daniele G, Alatrach M, et al. Increased in endogenous glucose production with SGLT2 inhibition is unchanged by renal denervation and correlates strongly with the increase in urinary glucose excretion. Diabetes Care. 2020;43:1065-1069.
Nagata T, Fukazawa M, Honda K, et al. Selective SGLT2 inhibition by tofogliflozin reduces renal glucose reabsorption under hyperglycemic but not under hypo- or euglycemic conditions in rats. Am J Physiol Endocrinol Metab. 2013;304(4):E414-E423.