Gene therapy in wound healing using nanotechnology.
Journal
Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society
ISSN: 1524-475X
Titre abrégé: Wound Repair Regen
Pays: United States
ID NLM: 9310939
Informations de publication
Date de publication:
03 2021
03 2021
Historique:
received:
17
09
2019
revised:
11
11
2020
accepted:
02
12
2020
pubmed:
31
12
2020
medline:
14
1
2022
entrez:
30
12
2020
Statut:
ppublish
Résumé
Wound healing is a complex and highly regulated process that is susceptible to a variety of failures leading to delayed wound healing or chronic wounds. This is becoming an increasingly global burden on the healthcare system. Treatment of wounds has evolved considerably to overcome barriers to wound healing especially within the field of regenerative medicine that focuses on the replacement of tissues or organs. Improved understanding of the pathophysiology of wound healing has enabled current advances in technology to allow better optimization of microenvironment within wounds. This approach may help tackle wounds that are difficult to treat and help reduce the global burden of the disease. This article provides an overview of the physiology in wound healing and the application of gene therapy using nanotechnology in the management of wounds.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
225-239Informations de copyright
© 2020 The Wound Healing Society.
Références
Pang C, Ibrahim A, Bulstrode NW, Ferretti P. An overview of the therapeutic potential of regenerative medicine in cutaneous wound healing. Int Wound J. 2017;14(3):450-459.
Frykberg RG, Banks J. Challenges in the treatment of chronic wounds. Adv Wound Care. 2015;4:560-582.
Phillips CJ, Humphreys I, Fletcher J, Harding K, Chamberlain G, Macey S. Estimating the costs associated with the management of patients with chronic wounds using linked routine data. Int Wound J. 2016;13(6):1193-1197.
Guest JF, Ayoub N, McIlwraith T, et al. Health economic burden that wounds impose on the National Health Service in the UK. BMJ Open. 2015;5:e009283.
Demidova-Rice TN, Hamblin MR, Herman IM. Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 1: Normal and chronic wounds: biology, causes, and approaches to care. Adv Skin Wound Care. 2012;25(7):304-314.
Janis JE, Harrison B. Wound healing: part I. Basic science. Plast Reconstr Surg. 2014;133(2):199e-207e.
Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res. 2012;49:35-43.
Hamdan S, Pastar I, Drakulich S, et al. Nanotechnology-driven therapeutic interventions in wound healing: potential uses and applications. ACS Cent Sci. 2017;3(3):163-175.
Gan LM, Lagerström-Fermér M, Carlsson LG, et al. Intradermal delivery of modified mRNA encoding VEGF-A in patients with type 2 diabetes. Nat Commun. 2019;10(1):1-9.
Wang C, Ma L, Gao C. Design of gene-activated matrix for the repair of skin and cartilage. Polym J. 2014;46:476-482.
Choi JS, Kim HS, Yoo HS. Electrospinning strategies of drug-incorporated nanofibrous mats for wound recovery. Drug Deliv Transl Res. 2015;5(2):137-145.
Branski LK, Gauglitz GG, Herndon DN, Jeschke MG. A review of gene and stem cell therapy in cutaneous wound healing. Burns. 2009;35(2):171-180.
Marti G, Ferguson M, Wang J, et al. Electroporative transfection with KGF-1 DNA improves wound healing in a diabetic mouse model. Gene Ther. 2004;11(24):1780-1785.
Lee P-Y, Chesnoy S, Huang L. Electroporatic delivery of TGF-beta1 gene works synergistically with electric therapy to enhance diabetic wound healing in db/db mice. J Invest Dermatol. 2004;123(4):791-798.
Pickar-Oliver A, Gersbach CA. The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol. 2019;20(8):490-507.
Redman M, King A, Watson C, King D. What is CRISPR/Cas9? Arch Dis Child Educ Pract Ed. 2016;101(4):213-215.
El-Mounadi K, Morales-Floriano ML, Garcia-Ruiz H. Principles, applications, and biosafety of plant genome editing using CRISPR-Cas9. Front Plant Sci. 2020;11(February):1-16.
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281-2308.
Bibikova M, Golic M, Golic KG, Carroll D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics. 2002;1175(July):1169-1175.
Hefferin ML, Tomkinson AE. Mechanism of DNA double-strand break repair by non-homologous end joining. DNA Repair Elsevier. 2005;4:639-648.
Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576(7785):149-157.
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533(7603):420-424.
Schwank G, Koo BK, Sasselli V, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 2013;13(6):653-658.
Roh DS, Li EBH, Liao EC. CRISPR craft: DNA editing the reconstructive ladder. Plast Reconstr Surg. 2018;142(5):1355-1364.
Zhang S, Guo F, Yan W, et al. Recent advances of CRISPR/Cas9-based genetic engineering and transcriptional regulation in industrial biology. Front Bioeng Biotechnol. 2020;7(January):1-11.
Gilbert LA, Horlbeck MA, Adamson B, et al. Genome-scale CRISPR-mediated control of gene repression and activation. 2015;159(3):647-661.
Konermann S, Brigham MD, Trevino AE, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 2015;517(7536):583-588.
Findlay GM, Boyle EA, Hause RJ, Klein JC, Shendure J. Saturation editing of genomic regions by multiplex homology-directed repair. Nature. 2014;513(7516):120-123.
Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R. One-step generation of mice carrying reporter and conditional alleles by CRISPR/cas-mediated genome engineering. Cell. 2013;154(6):1370-1379.
Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cell. Science (80-). 2014;343(6166):84-87.
Lino CA, Harper JC, Carney JP, Timlin JA. Delivering crispr: a review of the challenges and approaches. Drug Deliv. 2018;25(1):1234-1257.
Srifa W, Kosaric N, Amorin A, et al. Cas9-AAV6-engineered human mesenchymal stromal cells improved cutaneous wound healing in diabetic mice. Nat Commun. 2020;11(1):1-14.
Sessions JW, Armstrong DG, Hope S, Jensen BD. A review of genetic engineering biotechnologies for enhanced chronic wound healing. Exp Dermatol. 2017;26(2):179-185.
Goswami R, Subramanian G, Silayeva L, et al. Gene therapy leaves a vicious cycle. Front Oncol. 2019;9(APR):1-25.
Stolberg SG. The biotech death of Jesse Gelsinger - the New York times. New York times Magazine 1999.
Jamili E, Dua V. Optimal model-based control of non-viral siRNA delivery. Biotechnol Bioeng. 2018;115(7):1866-1877.
Boese QF, Scaringe SA, Marshall WS. siRNA as a tool for streamlining functional genomic studies. Drug Discov Today: TARGETS. 2003;2:93-100.
Hu B, Zhong L, Weng Y, et al. Therapeutic siRNA: state of the art. Signal Transduct Target Ther. 2020;5(1):101.
McNamara JO, Andrechek ER, Wang Y, et al. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol. 2006;24(8):1005-1015.
Ren K, Liu Y, Wu J, et al. A DNA dual lock-and-key strategy for cell-subtype-specific siRNA delivery. Nat Commun. 2016;7(1):1-10.
Cuellar TL, Barnes D, Nelson C, et al. Systematic evaluation of antibody-mediated siRNA delivery using an industrial platform of THIOMAB-siRNA conjugates. Nucleic Acids Res. 2015;43(2):1189-1203.
O'Rourke BP, Kramer AH, Cao LL, et al. Fidgetin-like 2 siRNA enhances the wound healing capability of a surfactant polymer dressing. Adv Wound Care. 2019;8(3):91-100.
Korrapati PS, Karthikeyan K, Satish A, Krishnaswamy VR, Venugopal JR, Ramakrishna S. Recent advancements in nanotechnological strategies in selection, design and delivery of biomolecules for skin regeneration. Mater Sci Eng C. 2016;67:747-765.
Mordorski B, Rosen J, Friedman A. Nanotechnology as an innovative approach for accelerating wound healing in diabetes. 2015;5(5):329-332.
Parani M, Lokhande G, Singh A, Gaharwar AK. Engineered Nanomaterials for infection control and healing acute and chronic wounds. ACS Appl Mater Interfaces. 2016;8(16):10049-10069.
Krausz AE, Adler BL, Cabral V, et al. Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomed Nanotechnol Biol Med. 2015;11(1):195-206.
Alexander MY, Akhurst RJ. Liposome-mediated gene transfer and expression via the skin. Hum Mol Genet. 1995;4(12):2279-2285.
Chenthamara D, Subramaniam S, Ramakrishnan SG, et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res. 2019;23(1):1-29.
Rajam AM, Jithendral P, Mandal AB, Rose C. Evaluation of in vitro macrophage response and in vivo host response to growth factors incorporated chitosan nanoparticle impregnated collagen-chitosan scaffold. J Biomed Nanotechnol. 2014;10(3):508-518.
Desai PR, Marepally S, Patel AR, Voshavar C, Chaudhuri A, Singh M. Topical delivery of anti-TNFα siRNA and capsaicin via novel lipid-polymer hybrid nanoparticles efficiently inhibits skin inflammation in vivo. J Control Release. 2013;170(1):51-63.
Rajendran NK, Kumar SSD, Houreld NN, Abrahamse H. A review on nanoparticle based treatment for wound healing. J Drug Deliv Sci Technol. 2018;44:421-430.
Zhou Y, Chen R, He T, et al. Biomedical potential of ultrafine Ag/AgCl nanoparticles coated on Graphene with special reference to antimicrobial performances and burn wound healing. ACS Appl Mater Interfaces. 2016;8(24):15067-15075.
Kaba SI, Egorova EM. In vitro studies of the toxic effects of silver nanoparticles on HeLa and U937 cells. Nanotechnol Sci Appl. 2015;8:19-29.
Yildirimer L, Thanh NTK, Loizidou M, Seifalian AM. Toxicology and clinical potential of nanoparticles. Nano Today. 2011;6(6):585-607.
Sarhan WA, Azzazy HME, El-Sherbiny IM. Honey/chitosan nanofiber wound dressing enriched with Allium sativum and Cleome droserifolia: enhanced antimicrobial and wound healing activity. ACS Appl Mater Interfaces. 2016;8(10):6379-6390.
GhavamiNejad A, Rajan Unnithan A, Ramachandra Kurup Sasikala A, et al. Mussel-inspired electrospun nanofibers functionalized with size-controlled silver nanoparticles for wound dressing application. ACS Appl Mater Interfaces. 2015;7(22):12176-12183.
Liu J, Sonshine DA, Shervani S, Hurt RH. Controlled release of biologically active silver from nanosilver surfaces. ACS Nano. 2010;4(11):6903-6913.
Wei SC, Chang L, Huang CC, Chang HT. Dual-functional gold nanoparticles with antimicrobial and proangiogenic activities improve the healing of multidrug-resistant bacteria-infected wounds in diabetic mice. Biomater Sci. 2019;7(11):4482-4490.
Pan A, Zhong M, Wu H, et al. Topical application of keratinocyte growth factor conjugated gold nanoparticles accelerate wound healing. Nanomed Nanotechnol Biol Med. 2018;14(5):1619-1628.
Hongwei Gu, P. L. Ho, Edmond Tong, Ling Wang and Bing Xu. Presenting Vancomycin on Nanoparticles to Enhance Antimicrobial Activities. 2003;
Sherwani MA, Tufail S, Khan AA, Owais M. Gold nanoparticle-photosensitizer conjugate based photodynamic inactivation of biofilm producing cells: potential for treatment of C. albicans infection in BALB/c mice. Sturtevant J, editor. PLoS One. 2015;10(7):e0131684.
Kumar S, Majhi RK, Singh A, et al. Carbohydrate-coated gold-silver nanoparticles for efficient elimination of multidrug resistant Bacteria and in vivo wound healing. ACS Appl Mater Interfaces. 2019;11(46):42998-43017.
Xu HL, Chen PP, ZhuGe DL, et al. Liposomes with silk fibroin hydrogel Core to stabilize bFGF and promote the wound healing of mice with deep second-degree scald. Adv Healthc Mater. 2017;6(19):1-13.
Manca ML, Matricardi P, Cencetti C, et al. Combination of argan oil and phospholipids for the development of an effective liposome-like formulation able to improve skin hydration and allantoin dermal delivery. Int J Pharm. 2016;505(1-2):204-211.
Fukui T, Kawaguchi AT, Takekoshi S, Miyasaka M, Sumiyoshi H, Tanaka R. Liposome-encapsulated hemoglobin accelerates skin wound healing in diabetic dB/dB mice. Artif Organs. 2017;41(4):319-326.
Chadha P, Katare OP, Chhibber S. Liposome loaded phage cocktail: enhanced therapeutic potential in resolving Klebsiella pneumoniae mediated burn wound infections. Burns. 2017;43(7):1532-1543.
Choi JU, Lee SW, Pangeni R, Byun Y, Yoon IS, Park JW. Preparation and in vivo evaluation of cationic elastic liposomes comprising highly skin-permeable growth factors combined with hyaluronic acid for enhanced diabetic wound-healing therapy. Acta Biomater. 2017;57:197-215.
Hussain A, Singh S, Sharma D, Webster TJ, Shafaat K, Faruk A. Elastic liposomes as novel carriers: recent advances in drug delivery. Int J Nanomedicine. 2017;12:5087-5108.
Xu HL, Chen PP, Wang LF, et al. Skin-permeable liposome improved stability and permeability of bFGF against skin of mice with deep second degree scald to promote hair follicle neogenesis through inhibition of scar formation. Colloids Surf B Biointerfaces. 2018;172(August):573-585.
Dongargaonkar AA, Bowlin GL, Yang H. Electrospun Blends of Gelatin and Gelatin-dendrimer Conjugates as a Wound Dressing and Drug Delivery Platform.
Liu X, Hao W, Lok CN, Wang YC, Zhang R, Wong KKY. Dendrimer encapsulation enhances anti-inflammatory efficacy of silver nanoparticles. J Pediatr Surg. 2014;49(12):1846-1851.
Strydom SJ, Rose WE, Otto DP, Liebenberg W, De Villiers MM. Poly(amidoamine) dendrimer-mediated synthesis and stabilization of silver sulfonamide nanoparticles with increased antibacterial activity. Nanomed Nanotechnol Biol Med. 2013;9(1):85-93.
Abdel-Sayed P, Kaeppli A, Siriwardena T, et al. Anti-microbial dendrimers against multidrug-Resistant P. aeruginosa enhance the angiogenic effect of biological burn-wound bandages. Sci Rep. 2016;6(February):1-10.
Holl EK, Bond JE, Selim MA, Sullenger B, Levinson H. The Nucleic Acid Scavenger Dendrimer Polyamidoamine Third-Generation Dendrimer Inhibits Fibroblast Activation and Inhibits Granulation Tissue Contraction.
Dąbkowska M, Rogińska D, Kłos P, Sobuś A, Adamczak M, Litwińska Z, et al. Electrostatic complex of neurotrophin 4 with dendrimer nanoparticles: controlled release of protein in vitro and in vivo. 2019;
Svenson S. The dendrimer paradox - high medical expectations but poor clinical translation. Chem Soc Rev. 2015;44(12):4131-4144.
Muzzarelli RAA, Guerrieri M, Goteri G, et al. The biocompatibility of dibutyryl chitin in the context of wound dressings. Biomaterials. 2005;26(29):5844-5854.
Drobnik J, Krucinska I, Komisarczyk A, Sporny S, Szczepanowska A, Ciosek J. Effects of electrospun scaffolds of di-O-butyrylchitin and poly-(ɛ-caprolactone) on wound healing. Can J Surg. 2017;60(3):162-171.
Shahverdi S, Hajimiri M, Esfandiari MA, et al. Fabrication and structure analysis of poly(lactide-co-glycolic acid)/silk fibroin hybrid scaffold for wound dressing applications. Int J Pharm. 2014;473(1-2):345-355.
Zhao X, Wu H, Guo B, Dong R, Qiu Y, Ma PX. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials. 2017;122:34-47.
Zhang Y, Jiang M, Zhang Y, et al. Novel lignin-chitosan-PVA composite hydrogel for wound dressing. Mater Sci Eng C. 2019;104(October 2018):110002.
Grip J, Engstad RE, Skjaeveland I, et al. Beta-glucan-loaded nanofiber dressing improves wound healing in diabetic mice. Eur J Pharm Sci. 2018;121(June):269-280.
Sh Ahmed A, Taher M, Mandal UK, et al. Pharmacological properties of Centella asiatica hydrogel in accelerating wound healing in rabbits. BMC Complement Altern Med. 2019;19(1):1-7.
Masood N, Ahmed R, Tariq M, et al. Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. Int J Pharm. 2019;559(August 2018):23-36.
Movaffagh J, Bazzaz BSF, Yazdi AT, et al. Wound healing and antimicrobial effects of chitosan-hydrogel/honey compounds in a rat full-thickness wound model. Wounds. 2019;31(9):228-235.
El-Kased RF, Amer RI, Attia D, Elmazar MM. Honey-based hydrogel: in vitro and comparative in vivo evaluation for burn wound healing. Sci Rep. 2017;7(1):1-11.
Nuutila K, Laukkanen A, Lindford A, et al. Inhibition of skin wound contraction by Nanofibrillar cellulose hydrogel. Plast Reconstr Surg. 2018;141(3):357e-366e.
Davoodi-Roodbordeii F, Afshar M, Haji Abas Tabrizi F, et al. Topical hydrogel containing Fumaria vaillantii Loisel. Extract enhances wound healing in rats. BMC Complement Altern Med. 2019;19(1):1-9.
Wu DQ, Zhu J, Han H, et al. Synthesis and characterization of arginine-NIPAAm hybrid hydrogel as wound dressing: in vitro and in vivo study. Acta Biomater. 2018;65:305-316.
Johnson NR, Wang Y. Controlled delivery of heparin-binding EGF-like growth factor yields fast and comprehensive wound healing. J Control Release. 2013;166(2):124-129.
Liu H, Zhao Y, Zou Y, et al. Heparin-poloxamer hydrogel-encapsulated rhFGF21 enhances wound healing in diabetic mice. FASEB J. 2019;33(9):9858-9870.
Lee MS, Ahmad T, Lee J, et al. Dual delivery of growth factors with coacervate-coated poly(lactic-co-glycolic acid) nanofiber improves neovascularization in a mouse skin flap model. Biomaterials. 2017;124:65-77.
Awada HK, Johnson NR, Wang Y. Dual delivery of vascular endothelial growth factor and hepatocyte growth factor coacervate displays strong angiogenic effects. Macromol Biosci. 2014;14(5):679-686.
Riley MK, Vermerris W. Recent advances in nanomaterials for gene delivery-a review. Nano MDPI AG. 2017;7:94.
Choi JS, Leong KW, Yoo HS. In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF). Biomaterials. 2008;29(5):587-596.
Park CJ, Clark SG, Lichtensteiger CA, Jamison RD, Johnson AJW. Accelerated wound closure of pressure ulcers in aged mice by chitosan scaffolds with and without bFGF. Acta Biomater. 2009;5(6):1926-1936.
Gurunathan S, Kang MH, Qasim M, Kim JH. Nanoparticle-mediated combination therapy: two-in-one approach for cancer. Int J Mol Sci. 2018;19:3264.
Anselmo AC, Mitragotri S. Nanoparticles in the clinic: An update. Bioeng Transl Med. 2019;4(3):e10143.
Krauss AC, Gao X, Li L, et al. FDA approval summary: (daunorubicin and cytarabine) liposome for injection for the treatment of adults with high-risk acute myeloid leukemia. Clin Cancer Res. 2019;25(9):2685-2690.
Adams D, Gonzalez-Duarte A, O'Riordan WD, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med. 2018;379(1):11-21.
Bonvalot S, Rutkowski PL, Thariat J, et al. NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act.In.Sarc): a multicentre, phase 2-3, randomised, controlled trial. Lancet Oncol. 2019;20(8):1148-1159.
Sprugel KH, McPherson JM, Clowes AW, Ross R. Effects of growth factors in vivo. I. Cell ingrowth into porous subcutaneous chambers. Am J Pathol. 1987;129(3):601-613.
Dando JS, Roncarolo MG, Bordignon C, Aiuti A. A novel human packaging cell line with hematopoietic supportive capacity increases gene transfer into early hematopoietic progenitors. Hum Gene Ther. 2001;12(16):1979-1988.
Kozarsky KF, Wilson JM. Gene therapy: adenovirus vectors. Curr Opin Genet Dev. 1993;3(3):499-503.
Wold WSM, Toth K. Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Curr Gene Ther. 2013;13(6):421-433.
Bett AJ, Prevec L, Graham FL. Packaging capacity and stability of human adenovirus type 5 vectors. J Virol. 1993;67(10):5911-5921.
Ritter T, Lehmann M, Volk H-D. Improvements in gene therapy: averting the immune response to adenoviral vectors. BioDrugs. 2002;16(1):3-10.
Liechty KW, Nesbit M, Herlyn M, Radu A, Scott Adzick N, Crombleholme TM. Adenoviral-mediated overexpression of platelet-derived growth factor-b corrects ischemic impaired wound healing. J Invest Dermatol. 1999;113(3):375-383.
Hengge UR, Mirmohammadsadegh A. Adeno-associated virus expresses transgenes in hair follicles and epidermis. Mol Ther. 2000;2:188-194.
Deodato B, Arsic N, Zentilin L, et al. Recombinant AAV vector encoding human VEGF165 enhances wound healing. Gene Ther. 2002;9:777-785.
Galeano M, Deodato B, Altavilla D, et al. Effect of recombinant adeno-associated virus vector-mediated vascular endothelial growth factor gene transfer on wound healing after burn injury. Crit Care Med. 2003;31(4):1017-1025.
Chen S, Kapturczak M, Loiler SA, et al. Efficient transduction of vascular endothelial cells with recombinant adeno-associated virus serotype 1 and 5 vectors. Hum Gene Ther. 2005;16(2):235-247.
Gardlík R, Pálffy R, Hodosy J, Lukács J, Turna J, Celec P. Vectors and delivery systems in gene therapy. Med Sci Monit. 2005;11(4):RA110-RA121.
Badillo AT, Chung S, Zhang L, Zoltick P, Liechty KW. Lentiviral gene transfer of SDF-1alpha to wounds improves diabetic wound healing. J Surg Res. 2007;143(1):35-42.
Lee JA, Conejero JA, Mason JM, et al. Lentiviral transfection with the PDGF-B gene improves diabetic wound healing. Plast Reconstr Surg. 2005;116(2):532-538.
Chen X, Gonçalves MAFV. Engineered viruses as genome editing devices. Mol Ther. 2016;24(3):447-457.
Senís E, Fatouros C, Große S, et al. CRISPR/Cas9-mediated genome engineering: An adeno-associated viral (AAV) vector toolbox. Biotechnol J. 2014;9(11):1402-1412.
Mout R, Ray M, Lee YW, Scaletti F, Rotello VM. In vivo delivery of CRISPR/Cas9 for therapeutic gene editing: Progress and challenges. Bioconjug Chem American Chemical Society. 2017;28:880-884.
Mout R, Ray M, Yesilbag Tonga G, et al. Direct cytosolic delivery of CRISPR/Cas9-Ribonucleoprotein for efficient gene editing. ACS Nano. 2017;11(3):2452-2458.
Hu JH, Davis KM, Liu DR. Chemical biology approaches to genome editing: understanding, controlling, and delivering programmable nucleases. Cell Chemical Biology. 2016;23:57-73.
Chen F, Alphonse M, Liu Q. Strategies for nonviral nanoparticle-based delivery of CRISPR/Cas9 therapeutics. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12(3):1-14.
Eriksson E, Yao F, Svensjö T, et al. In vivo gene transfer to skin and wound by microseeding. J Surg Res. 1998;78(2):85-91.
Ortega-Muñoz M, Giron-Gonzalez MD, Salto-Gonzalez R, et al. Polyethyleneimine-coated gold nanoparticles: straightforward preparation of efficient DNA delivery Nanocarriers. Chem - An Asian J. 2016;11(23):3365-3375.
Eming SA, Medalie DA, Tompkins RG, Yarmush ML, Morgan JR. Genetically modified human keratinocytes overexpressing PDGF-A enhance the performance of a composite skin graft. Hum Gene Ther. 1998;9(4):529-539.
Eming SA, Snow RG, Yarmush ML, Morgan JR. Targeted expression of insulin-like growth factor to human keratinocytes: modification of the autocrine control of keratinocyte proliferation. J Invest Dermatol. 1996;107(1):113-120.
Bleiziffer O, Eriksson E, Yao F, Horch RE, Kneser U. Gene transfer strategies in tissue engineering: tissue engineering review series. J Cell Mol Med. 2007;11:206-223.
Felgner PL, Ringold GM. Cationic liposome-mediated transfection. Nature. 1989;337(6205):387-388.
Jeschke MG, Barrow RE, Hawkins HK, et al. IGF-I gene transfer in thermally injured rats. Gene Ther. 1999;6(6):1015-1020.
Kwon MJ, An S, Choi S, et al. Effective healing of diabetic skin wounds by using nonviral gene therapy based on minicircle vascular endothelial growth factor DNA and a cationic dendrimer. J Gene Med. 2012;14(4):272-278.
Randeria PS, Seeger MA, Wang X-Q, et al. siRNA-based spherical nucleic acids reverse impaired wound healing in diabetic mice by ganglioside GM3 synthase knockdown. Proc Natl Acad Sci. 2015;112(18):5573-5578.
Rabbani PS, Zhou A, Borab ZM, et al. Novel lipoproteoplex delivers Keap1 siRNA based gene therapy to accelerate diabetic wound healing. Biomaterials. 2017;132:1-15.
Turner CT, Hasanzadeh Kafshgari M, Melville E, et al. Delivery of flightless I siRNA from porous silicon nanoparticles improves wound healing in mice. ACS Biomater Sci Eng. 2016;2(12):2339-2346.
Castleberry SA, Almquist BD, Li W, et al. Self-assembled wound dressings silence MMP-9 and improve diabetic wound healing in vivo. Adv Mater. 2016;28(9):1809-1817.
Kobsa S, Kristofik NJ, Sawyer AJ, Bothwell ALM, Kyriakides TR, Saltzman WM. An electrospun scaffold integrating nucleic acid delivery for treatment of full-thickness wounds. Biomaterials. 2013;34(15):3891-3901.
Kim HS, Yoo HS. In vitro and in vivo epidermal growth factor gene therapy for diabetic ulcers with electrospun fibrous meshes. Acta Biomater. 2013;9(7):7371-7380.
Wei T, Cheng Q, Min YL, Olson EN, Siegwart DJ. Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat Commun. 2020;11(1):1-12.
Lee K, Conboy M, Park HM, et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat Biomed Eng. 2017;1(11):889-901.
Wang P, Zhang L, Xie Y, et al. Genome editing for Cancer therapy: delivery of Cas9 protein/sgRNA plasmid via a gold Nanocluster/lipid Core-Shell Nanocarrier. Adv Sci. 2017;4(11):1700175.
Bae T, Hur JW, Kim D, Hur JK. Recent trends in CRISPR-Cas system: genome, epigenome, and transcriptome editing and CRISPR delivery systems. Gene Genom Genetics Society of Korea. 2019;41:871-877.
Park J, Gu L, Von Maltzahn G, Ruoslahti E, Sangeeta N, Sailor MJ. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater. 2015;8(4):2015.
Nakamura T, Akita H, Yamada Y, Hatakeyama H, Harashima H. A multifunctional envelope-type nanodevice for use in nanomedicine: concept and applications. Acc Chem Res. 2012;45(7):1113-1121.
Zuris JA, Thompson DB, Shu Y, et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol. 2015;33(1):73-80.
Wang M, Zuris JA, Meng F, et al. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc Natl Acad Sci U S A. 2016;113(11):2868-2873.
Galeano M, Deodato B, Altavilla D, et al. Adeno-associated viral vector-mediated human vascular endothelial growth factor gene transfer stimulates angiogenesis and wound healing in the genetically diabetic mouse. Diabetologia. 2003;46(4):546-555.
Martin JR, Nelson CE, Gupta MK, et al. Local delivery of PHD2 siRNA from ROS-degradable scaffolds to promote diabetic wound healing. Adv Healthc Mater. 2016;5(21):2751-2757.
Pereira CT, Herndon DN, Rocker R, Jeschke MG. Liposomal gene transfer of keratinocyte growth factor improves wound healing by altering growth factor and collagen expression. J Surg Res. 2007;139(2):222-228.
Andree C, Swain WF, Page CP, et al. In vivo transfer and expression of a human epidermal growth factor gene accelerates wound repair. Proc Natl Acad Sci. 1994;91(25):12188-12192.
Benn SI, Whitsitt JS, Broadley KN, et al. Particle-mediated gene transfer with transforming growth factor-beta1 cDNAs enhances wound repair in rat skin. J Clin Invest. 1996;98(12):2894-2902.
Lee P-Y, Li Z, Huang L. Thermosensitive hydrogel as a Tgf-beta1 gene delivery vehicle enhances diabetic wound healing. Pharm Res. 2003;20(12):1995-2000.
Sun L, Xu L, Chang H, et al. Transfection with aFGF cDNA improves wound healing. J Invest Dermatol. 1997;108(3):313-318.
Jeschke MG, Schubert T, Klein D. Exogenous liposomal IGF-I cDNA gene transfer leads to endogenous cellular and physiological responses in an acute wound. Am J Physiol Integr Comp Physiol. 2004;286(5):R958-R966.