Genome-wide identification of novel genes involved in Corynebacteriales cell envelope biogenesis using Corynebacterium glutamicum as a model.
Bacterial Proteins
/ classification
Cell Wall
/ genetics
Computational Biology
/ methods
Corynebacterium glutamicum
/ genetics
DNA Transposable Elements
Galactans
/ genetics
Gene Expression
Gene Ontology
Genetic Loci
Genome, Bacterial
Molecular Sequence Annotation
Mutagenesis, Insertional
Mycolic Acids
/ metabolism
Peptidoglycan
/ genetics
Plasmids
/ chemistry
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2020
2020
Historique:
received:
24
09
2020
accepted:
16
12
2020
entrez:
31
12
2020
pubmed:
1
1
2021
medline:
13
1
2021
Statut:
epublish
Résumé
Corynebacteriales are Actinobacteria that possess an atypical didermic cell envelope. One of the principal features of this cell envelope is the presence of a large complex made up of peptidoglycan, arabinogalactan and mycolic acids. This covalent complex constitutes the backbone of the cell wall and supports an outer membrane, called mycomembrane in reference to the mycolic acids that are its major component. The biosynthesis of the cell envelope of Corynebacteriales has been extensively studied, in particular because it is crucial for the survival of important pathogens such as Mycobacterium tuberculosis and is therefore a key target for anti-tuberculosis drugs. In this study, we explore the biogenesis of the cell envelope of Corynebacterium glutamicum, a non-pathogenic Corynebacteriales, which can tolerate dramatic modifications of its cell envelope as important as the loss of its mycomembrane. For this purpose, we used a genetic approach based on genome-wide transposon mutagenesis. We developed a highly effective immunological test based on the use of anti-cell wall antibodies that allowed us to rapidly identify bacteria exhibiting an altered cell envelope. A very large number (10,073) of insertional mutants were screened by means of this test, and 80 were finally selected, representing 55 different loci. Bioinformatics analyses of these loci showed that approximately 60% corresponded to genes already characterized, 63% of which are known to be directly involved in cell wall processes, and more specifically in the biosynthesis of the mycoloyl-arabinogalactan-peptidoglycan complex. We identified 22 new loci potentially involved in cell envelope biogenesis, 76% of which encode putative cell envelope proteins. A mutant of particular interest was further characterized and revealed a new player in mycolic acid metabolism. Because a large proportion of the genes identified by our study is conserved in Corynebacteriales, the library described here provides a new resource of genes whose characterization could lead to a better understanding of the biosynthesis of the envelope components of these bacteria.
Identifiants
pubmed: 33383576
doi: 10.1371/journal.pone.0240497
pii: PONE-D-20-30129
pmc: PMC7775120
doi:
Substances chimiques
Bacterial Proteins
0
DNA Transposable Elements
0
Galactans
0
Mycolic Acids
0
Peptidoglycan
0
arabinogalactan
SL4SX1O487
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0240497Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
J Biol Chem. 2005 Jul 15;280(28):26573-85
pubmed: 15901732
J Biol Chem. 2018 Oct 5;293(40):15628-15640
pubmed: 30154248
Proc Natl Acad Sci U S A. 2006 May 30;103(22):8511-6
pubmed: 16709676
Microbiology (Reading). 2008 Aug;154(Pt 8):2315-2326
pubmed: 18667564
Mol Microbiol. 2010 Aug;77(3):605-17
pubmed: 20545848
FEMS Microbiol Lett. 1990 Jan 1;54(1-3):263-9
pubmed: 2108897
J Bacteriol. 2010 Jun;192(11):2691-700
pubmed: 20363942
J Bacteriol. 2004 Oct;186(19):6605-16
pubmed: 15375142
Mol Microbiol. 2008 Jun;68(6):1595-613
pubmed: 18452585
Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3963-7
pubmed: 18316738
Nucleic Acids Res. 2019 Jan 8;47(D1):D309-D314
pubmed: 30418610
Microbiology (Reading). 2001 Aug;147(Pt 8):2223-2231
pubmed: 11495999
Mol Microbiol. 2003 Apr;48(1):77-84
pubmed: 12657046
BMC Genomics. 2013 Dec 17;14:888
pubmed: 24341750
Microbiology (Reading). 2005 Jul;151(Pt 7):2421-2427
pubmed: 16000732
Mol Microbiol. 2000 Mar;35(5):1026-41
pubmed: 10712685
Microbiology (Reading). 1999 Dec;145 ( Pt 12):3399-3408
pubmed: 10627038
J Biol Chem. 2020 May 1;295(18):6108-6119
pubmed: 32217691
Biochim Biophys Acta Bioenerg. 2019 Oct 1;1860(10):148033
pubmed: 31226315
J Bacteriol. 2008 Aug;190(16):5672-80
pubmed: 18567661
J Biotechnol. 2003 Sep 4;104(1-3):301-9
pubmed: 12948647
J Biotechnol. 2003 Sep 4;104(1-3):129-53
pubmed: 12948635
Microbiology (Reading). 2020 Aug;166(8):759-776
pubmed: 32490790
Biochem Biophys Res Commun. 2006 Feb 17;340(3):953-60
pubmed: 16403458
PLoS One. 2015 Jun 29;10(6):e0131634
pubmed: 26121694
Chem Biol. 2014 Jan 16;21(1):67-85
pubmed: 24374164
Biochimie. 1999 Aug-Sep;81(8-9):879-88
pubmed: 10572301
FEMS Microbiol Lett. 1990 Oct;60(1-2):143-6
pubmed: 2283029
J Biotechnol. 2003 Sep 4;104(1-3):5-25
pubmed: 12948626
J Biol Chem. 2005 Mar 11;280(10):8862-74
pubmed: 15632194
J Biol Chem. 2007 Apr 13;282(15):11000-8
pubmed: 17308303
Front Microbiol. 2018 Oct 09;9:2341
pubmed: 30369911
J Biol Chem. 2015 May 22;290(21):13079-94
pubmed: 25847251
Microbiology (Reading). 2006 Aug;152(Pt 8):2491-2503
pubmed: 16849811
FEMS Microbiol Lett. 1994 Oct 15;123(1-2):11-8
pubmed: 7988876
FEMS Microbiol Lett. 2003 Jul 15;224(1):35-44
pubmed: 12855165
Nucleic Acids Res. 2018 Jan 4;46(D1):D633-D639
pubmed: 29059334
J Bacteriol. 1996 Aug;178(15):4412-9
pubmed: 8755867
J Biol Chem. 1990 Apr 25;265(12):6734-43
pubmed: 2108960
Microbiol Spectr. 2019 Jul;7(4):
pubmed: 31267927
Mol Microbiol. 2018 Feb;107(3):312-329
pubmed: 29148103
Biomed Pharmacother. 2017 Nov;95:1520-1534
pubmed: 28946393
J Bacteriol. 1998 Jun;180(12):3159-65
pubmed: 9620966
Nature. 2005 Jul 21;436(7049):406-9
pubmed: 16034419
J Microbiol Methods. 2005 Oct;63(1):89-94
pubmed: 16157212
Biosci Biotechnol Biochem. 2006 Jan;70(1):22-30
pubmed: 16428817
J Bacteriol. 2007 Jul;189(14):5257-64
pubmed: 17483212
J Biol Chem. 2001 Jul 13;276(28):26430-40
pubmed: 11304545
Nucleic Acids Res. 2019 Jan 8;47(D1):D666-D677
pubmed: 30289528
Mol Microbiol. 2020 Jul;114(1):1-16
pubmed: 32073722
PLoS Genet. 2019 Aug 22;15(8):e1008284
pubmed: 31437147
BMC Microbiol. 2012 Jan 13;12:6
pubmed: 22243621
Nucleic Acids Res. 2017 Jan 4;45(D1):D200-D203
pubmed: 27899674
J Biol Chem. 2005 Sep 16;280(37):32362-71
pubmed: 16040600
Mol Microbiol. 2007 Nov;66(3):643-57
pubmed: 17877698
Front Microbiol. 2014 Apr 10;5:132
pubmed: 24782835
Mol Microbiol. 1993 Jul;9(1):97-109
pubmed: 8412676
Appl Environ Microbiol. 1999 Apr;65(4):1530-9
pubmed: 10103247
J Bacteriol. 2013 Sep;195(18):4121-8
pubmed: 23852866
Mol Cells. 2001 Aug 31;12(1):112-6
pubmed: 11561719
BMC Microbiol. 2017 Jul 12;17(1):158
pubmed: 28701150
J Biol Chem. 2007 May 18;282(20):14729-40
pubmed: 17387176
J Bacteriol. 2014 Jul;196(14):2638-45
pubmed: 24816608
Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1621-6
pubmed: 21205886
J Biotechnol. 2006 Oct 1;125(4):503-12
pubmed: 16707184
Gene. 1994 Jul 22;145(1):69-73
pubmed: 8045426
Microbiology (Reading). 2015 Jan;161(Pt 1):67-83
pubmed: 25368414
Genome Biol. 2003;4(2):R11
pubmed: 12620121
Cold Spring Harb Protoc. 2019 Feb 1;2019(2):
pubmed: 30710023
J Bacteriol. 2008 Dec;190(24):8204-14
pubmed: 18931118
Microbiology (Reading). 2004 Jan;150(Pt 1):73-84
pubmed: 14702399
Cell Surf. 2018 Mar;1:2-14
pubmed: 29998212
Proc Natl Acad Sci U S A. 2004 Jan 6;101(1):314-9
pubmed: 14695899
J Biol Chem. 2014 Feb 28;289(9):6177-87
pubmed: 24446451
Microbiology (Reading). 2011 Jan;157(Pt 1):77-88
pubmed: 20847010