Relationship between MRI findings and invasive breast cancer with podoplanin-positive cancer-associated fibroblasts.
Breast cancer
Cancer-associated fibroblasts
Magnetic resonance imaging
Podoplanin
Journal
Breast cancer (Tokyo, Japan)
ISSN: 1880-4233
Titre abrégé: Breast Cancer
Pays: Japan
ID NLM: 100888201
Informations de publication
Date de publication:
May 2021
May 2021
Historique:
received:
13
02
2020
accepted:
19
11
2020
pubmed:
4
1
2021
medline:
6
11
2021
entrez:
3
1
2021
Statut:
ppublish
Résumé
Purpose of our study is to assess the relationship between MRI findings and invasive breast cancer (IBC) with cancer-associated fibroblasts (CAFs) that are positive for podoplanin. We retrospectively analyzed the consecutive 109 IBCs. The IBCs were dichotomized as with (+) or without (-) podoplanin-positive CAFs. In MRI analyses, the dichotomized IBCs were compared the lesion to muscle ratio (L/M ratio) in STIR images, the ADC value, the distribution of kinetic parameters, and morphological findings. Of the 109 IBCs, 28 (26%) IBCs had podoplanin(+) CAFs. Compared to the podoplanin(-) group, the podoplanin(+) group tended to have a more malignant pathological status. In the STIR images, the podoplanin(+) group had significantly higher L/M ratio (7.59 vs. 6.55, p = 0.040). In a dynamic study, the podoplanin(+) group had a significantly higher percentage of the washout pattern (42.21% vs. 29.43%, p = 0.045). There were 23 mass lesions and 5 non-mass enhancement (NME) lesions in the podoplanin(+) group, and 69 mass lesions and 12 NME lesions in the podoplanin(-) group. The mass lesions of the podoplanin(-) group had a significantly higher likelihood of showing an irregular shape (n = 47 vs. 8, p = 0.035). The podoplanin(+) group's lesions had a significantly higher likelihood of showing a circumscribed margin (n = 14 vs. 6, p < 0.001) and a rim enhancement (n = 10 vs. 13, p = 0.047). In multivariate analyses, only high nuclear grade was significant predictive value of podoplanin(+) CAFs. Although not significant in multivariate analyses, MRI findings may be used to determine the podoplanin-positive CAF status of invasive breast cancer.
Identifiants
pubmed: 33389554
doi: 10.1007/s12282-020-01198-6
pii: 10.1007/s12282-020-01198-6
doi:
Substances chimiques
Biomarkers, Tumor
0
Membrane Glycoproteins
0
PDPN protein, human
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
572-580Références
Fischer U, Kopka L, Grabbe E. Breast carcinoma: effect of preoperative contrast-enhanced MR imaging on the therapeutic approach. Radiology. 1999;213:881–8.
doi: 10.1148/radiology.213.3.r99dc01881
Van Goethem M, Schelfout K, Kersschot E, Colpaert C, Verslegers I, Biltjes I, et al. MR mammography is useful in the preoperative locoregional staging of breast carcinomas with extensive intraductal component. Eur J Radiol. 2007;62:273–82.
doi: 10.1016/j.ejrad.2006.12.004
Lehman CD, Gatsonis C, Kuhl CK, Hendrick RE, Pisano ED, Hanna L, et al. MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer. N Engl J Med. 2007;356:1295–303.
doi: 10.1056/NEJMoa065447
Orel SG, Schnall MD. MR imaging of the breast for the detection, diagnosis, and staging of breast cancer. Radiology. 2001;220:13–30.
doi: 10.1148/radiology.220.1.r01jl3113
Yamaguchi K, Schacht D, Sennett CA, Newstead GM, Imaizumi T, Irie H, et al. Decision making for breast lesions initially detected at contrast-enhanced breast MRI. AJR Am J Roentgenol. 2013;201:1376–85.
doi: 10.2214/AJR.12.8953
Yamaguchi K, Abe H, Newstead GM, Egashira R, Nakazono T, Imaizumi T, et al. Intratumoral heterogeneity of the distribution of kinetic parameters in breast cancer: comparison based on the molecular subtypes of invasive breast cancer. Breast Cancer. 2015;22:496–502.
doi: 10.1007/s12282-013-0512-0
Yamaguchi K, Nakazono T, Egashira R, Komori Y, Nakamura J, Noguchi T, et al. Diagnostic performance of diffusion tensor imaging with readout-segmented echo-planar imaging for invasive breast cancer: correlation of ADC and FA with pathological prognostic markers. Magn Reson Med Sci. 2017;16:245–52.
doi: 10.2463/mrms.mp.2016-0037
Nagasaka K, Satake H, Ishigaki S, Kawai H, Naganawa S. Histogram analysis of quantitative pharmacokinetic parameters on DCE-MRI: correlations with prognostic factors and molecular subtypes in breast cancer. Breast Cancer. 2019;26:113–24.
doi: 10.1007/s12282-018-0899-8
Wu J, Li X, Teng X, Rubin DL, Napel S, Daniel BL, et al. Magnetic resonance imaging and molecular features associated with tumor-infiltrating lymphocytes in breast cancer. Breast Cancer Res. 2018;20:101.
doi: 10.1186/s13058-018-1039-2
Korkaya H, Liu S, Wicha MS. Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Invest. 2011;121:3804–9.
doi: 10.1172/JCI57099
Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell. 2004;6:17–32.
doi: 10.1016/j.ccr.2004.06.010
Xing F, Saidou J, Watabe K. Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci (Landmark Ed). 2010;15:166–79.
doi: 10.2741/3613
Ishii G, Ochiai A, Neri S. Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Adv Drug Deliv Rev. 2016;99:186–96.
doi: 10.1016/j.addr.2015.07.007
Liotta LA, Kohn EC. The microenvironment of the tumour-host interface. Nature. 2001;411:375–9.
doi: 10.1038/35077241
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.
doi: 10.1016/j.cell.2011.02.013
Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121:335–48.
doi: 10.1016/j.cell.2005.02.034
Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L, et al. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci USA. 2004;101:4966–71.
doi: 10.1073/pnas.0401064101
Boire A, Covic L, Agarwal A, Jacques S, Sherifi S, Kuliopulos A. PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell. 2005;120:303–13.
doi: 10.1016/j.cell.2004.12.018
Nazari SS, Mukherjee P. An overview of mammographic density and its association with breast cancer. Breast Cancer. 2018;25:259–67.
doi: 10.1007/s12282-018-0857-5
Pula B, Jethon A, Piotrowska A, Gomulkiewicz A, Owczarek T, Calik J, et al. Podoplanin expression by cancer-associated fibroblasts predicts poor outcome in invasive ductal breast carcinoma. Histopathology. 2011;59:1249–60.
doi: 10.1111/j.1365-2559.2011.04060.x
Gandarillas A, Scholl FG, Benito N, Gamallo C, Quintanilla M. Induction of PA2.26, a cell-surface antigen expressed by active fibroblasts, in mouse epidermal keratinocytes during carcinogenesis. Mol Carcinog. 1997;20:10–8.
doi: 10.1002/(SICI)1098-2744(199709)20:1<10::AID-MC3>3.0.CO;2-M
Zimmer G, Oeffner F, Von Messling V, Tschernig T, Groness HJ, Klenk HD, et al. Cloning and characterization of gp36, a human mucin-type glycoprotein preferentially expressed in vascular endothelium. Biochem J. 1999;341(Pt 2):277–84.
doi: 10.1042/bj3410277
Schoppmann SF, Berghoff A, Dinhof C, Jakesz R, Gnant M, Dubsky P, et al. Podoplanin-expressing cancer-associated fibroblasts are associated with poor prognosis in invasive breast cancer. Breast Cancer Res Treat. 2012;134:237–44.
doi: 10.1007/s10549-012-1984-x
Kawase A, Ishii G, Nagai K, Ito T, Nagano T, Murata Y, et al. Podoplanin expression by cancer associated fibroblasts predicts poor prognosis of lung adenocarcinoma. Int J Cancer. 2008;123:1053–9.
doi: 10.1002/ijc.23611
Yamanashi T, Nakanishi Y, Fujii G, Akishima-Fukasawa Y, Moriya Y, Kanai Y, et al. Podoplanin expression identified in stromal fibroblasts as a favorable prognostic marker in patients with colorectal carcinoma. Oncology. 2009;77:53–62.
doi: 10.1159/000226112
Aishima S, Nishihara Y, Iguchi T, Taguchi K, Taketomi A, Maehara Y, et al. Lymphatic spread is related to VEGF-C expression and D2–40-positive myofibroblasts in intrahepatic cholangiocarcinoma. Mod Pathol. 2008;21:256–64.
doi: 10.1038/modpathol.3800985
Pula B, Wojnar A, Werynska B, Ambicka A, Kruczak A, Witkiewicz W, et al. Impact of different tumour stroma assessment methods regarding podoplanin expression on clinical outcome in patients with invasive ductal breast carcinoma. Anticancer Res. 2013;33:1447–55.
pubmed: 23564785
Yamaguchi K, Hara Y, Kitano I, Hamamoto T, Kiyomatsu K, Yamasaki F, et al. Tumor-stromal ratio (TSR) of invasive breast cancer: correlation with multi-parametric breast MRI findings. Br J Radiol. 2019;92:20181032.
doi: 10.1259/bjr.20181032
American College of Radiology. Breast imaging reporting and data system: ACR BI-RADS breast imaging atlas. 5th edn. 2013.
Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thurlimann B, et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer 2013. Ann Oncol. 2013;24:2206–23.
doi: 10.1093/annonc/mdt303
Luczynska E, Niemiec J, Heinze S, Adamczyk A, Ambicka A, Marcyniuk P, et al. Intensity and pattern of enhancement on CESM: prognostic significance and its relation to expression of Podoplanin in Tumor Stroma—a preliminary report. Anticancer Res. 2018;38:1085–95.
pubmed: 29374745
Matsubayashi RN, Imanishi M, Nakagawa S, Takahashi R, Akashi M, Momosaki S, et al. Breast ultrasound elastography and magnetic resonance imaging of fibrotic changes of breast disease: correlations between elastography findings and pathologic and short Tau inversion recovery imaging results, including the enhancement ratio and apparent diffusion coefficient. J Comput Assist Tomogr. 2015;39:94–101.
doi: 10.1097/RCT.0000000000000155
Bellin MF, Van Der Molen AJ. Extracellular gadolinium-based contrast media: an overview. Eur J Radiol. 2008;66:160–7.
doi: 10.1016/j.ejrad.2008.01.023
Choi SY, Chang YW, Park HJ, Kim HJ, Hong SS, Seo DY. Correlation of the apparent diffusion coefficiency values on diffusion-weighted imaging with prognostic factors for breast cancer. Br J Radiol. 2012;85:e474–9.
doi: 10.1259/bjr/79381464
Cipolla V, Santucci D, Guerrieri D, Drudi FM, Meggiorini ML, de Felice C. Correlation between 3T apparent diffusion coefficient values and grading of invasive breast carcinoma. Eur J Radiol. 2014;83:2144–50.
doi: 10.1016/j.ejrad.2014.09.015
Uematsu T, Kasami M, Yuen S. Triple-negative breast cancer: correlation between MR imaging and pathologic findings. Radiology. 2009;250:638–47.
doi: 10.1148/radiol.2503081054
Tozaki M, Fukuda K, Suzuki M. Dynamic high-spatial-resolution MR imaging of invasive ductal carcinoma: influence of histological scirrhous component on MR descriptors. Magn Reson Med Sci. 2006;5:137–46.
doi: 10.2463/mrms.5.137